
Non-Classical Knowledge Representation
and Reasoning

Italian National PhD Course on AI, 2024

Umberto Straccia & Giovanni Casini

CNR - ISTI, Pisa, Italy
http://www.straccia.info

{umberto.straccia, giovanni.casini}@isti.cnr.it

http://www.straccia.info

Outline

Classical Logics and Knowledge Representation and Reasoning (KRR)
Propositional Logic
First-Order Logic

Introduction to Semantic Web Languages (SWLs)
Resource Description Framework Schema (RDFS)
Description Logics
Logic Programs

Uncertainty and Fuzzyness in Logics
Uncertainty vs. Vagueness: a clarification
Probability & Propositional Logic
Fuzzyness & Propositional Logic

Uncertainity & Fuzzyness in Semantic Web Languages
RDFS
Description Logics
Logic Programs

Classical Logics and Knowledge Representation and
Reasoning (KRR)

Propositional Logic

Propositional Logic: Basic Ideas

The elementary building blocks of propositional logic are
▶ atomic propositions (or simply atoms) that cannot be

decomposed any further: E.g.,
▶ “The block is red”
▶ “It is raining”

▶ logical connectives “and”, “or”, “not”, by which we can build
propositional formulas

Propositional Logic: syntax

Atomic Propositions

▶ ⊥ (denoting false)
▶ ⊤ (denoting true)
▶ Any letter of the alphabet, e.g.: p
▶ Any letter of the alphabet with a numeric subscript and/or

superscript, e.g.: q4,p7, r
′

2
▶ Any alphanumeric string, e.g.: “Tom is the driver”

is an atomic proposition (or simply and atom)

Well-Formed Propositions (WFPs)

1. Every atomic proposition is a wfp
2. If α is a wfp, then so is (¬α)
3. If α and β are wfps, then so are

(conjunction) (α ∧ β) (disjunction) (α ∨ β)
(implication) (α→ β) (equivalence) (α↔ β)

4. Nothing else is a wfp
▶ Parentheses may be omitted

▶ we allow (p1 ∧ · · · ∧ pn) and (p1 ∨ · · · ∨ pn)

▶ Square brackets may be used instead of parentheses
▶ The symbols ¬,∧,∨,→,↔ are called logical connectives

Examples of (WFPs)

((p ∧ (q ∨ c))→ d)

(“Betty drives Tom”→ (¬ “Tom is the driver”))

Summary: Syntax of Propositional Logic

Countable alphabet Σ of atomic propositions: a,b, c, . . .

α, β −→ a (atom)
| ⊥ (false)
| ⊤ (true)
| (¬α) (negation)
| (α ∧ β) (conjunction)
| (α ∨ β) (disjunction)
| (α→ β) (implication)
| (α↔ β) (equivalence)

Atom : atomic proposition
Literal : atomic proposition or negated atomic proposition

(e.g., a, ¬b)

Semantics: Intuition

▶ Atomic statements can be true (T) or false (F)
▶ The truth value of formulas is determined by the truth

values of the atoms
Example: (a ∨ b) ∧ c
▶ If a and b are false and c is true, then the formula is false
▶ If a and c are true, then the formula is true

Semantics: formally

▶ A truth value assignment (or interpretation) of the atoms in
Σ is a function I:

I : Σ→ {T,F}
▶ Instead of I(a) we also write aI

▶ A formula α is satisfied by an interpretation I, denoted
I |= α iff

I |= ⊤
I ̸|=⊥
I |= a iff aI = T
I |= ¬α iff I ̸|= α
I |= α ∧ β iff I |= α and I |= β
I |= α ∨ β iff I |= α or I |= β
I |= α→ β iff if I |= α then I |= β
I |= α↔ β iff I |= α if and only if I |= β

Example

▶ Consider the formula α

(a ∨ b) ∧ c

▶ Let I1 be the interpretation

aI1 = T
bI1 = F
cI1 = T

then I1 |= α

I1 |= (a ∨ b) ∧ c iff I1 |= (a ∨ b) and I1 |= c
iff I1 |= (a ∨ b) and cI1 = T
iff (I1 |= a or I1 |= b) and cI1 = T
iff (aI1 = T or bI1 = T) and cI1 = T

Example

▶ Consider the formula α

(a ∨ b) ∧ c

▶ Let I2 be the interpretation

aI2 = F
bI2 = F
cI2 = T

then I2 ̸|= α

Truth Tables

The truth of a formula γ in an interpretation I (denoted γI) can
also be determined using truth tables

α ¬α
T F
F T

α β α ∧ β
F F F
F T F
T F F
T T T

α β α ∨ β
F F F
F T T
T F T
T T T

α β α→ β

F F T
F T T
T F F
T T T

α β α↔ β

F F T
F T F
T F F
T T T

Example

▶ Consider the formula α

(a ∨ b) ∧ c

▶ Let I1 be the interpretation

aI1 = T
bI1 = F
cI1 = T

then I1 |= α

▶ In fact, αI1 = T

αI1 = (aI1 ∨ bI1) ∧ cI1

= (T ∨ F) ∧ T
= T ∧ T
= T

Example

▶ Consider the formula α

(a ∨ b) ∧ c

▶ Let I2 be the interpretation

aI2 = F
bI2 = F
cI2 = T

then I2 ̸|= α

▶ In fact, αI1 = F

αI2 = (aI2 ∨ bI2) ∧ cI2

= (F ∨ F) ∧ T
= F ∧ T
= F

Semantics: Interpretations as {0,1}-functions

▶ An interpretation can also be specified as a function
I : Σ→ {0,1}

▶ The intuition is that aI = 1 means that a is True, while
aI = 0 means that a is False:

I |= a iff aI = 1

▶ The truth αI of a formula α in I can be established using
the rules:

(¬α)I = 1− αI
(α ∨ β)I = max(αI , βI)

(α ∧ β)I = min(αI , βI)

(α→ β)I = max(1− αI , βI)
(α↔ β)I = 1− |αI − βI |

Example

▶ Consider the formula α

(a ∨ b) ∧ c

▶ Let I1 be the interpretation

aI1 = 1
bI1 = 0
cI1 = 1

then I1 |= α

▶ In fact, αI1 = 1
αI1 = (aI1 ∨ bI1) ∧ cI1

= min(max(1,0),1)
= min(1,1)
= 1

Example

▶ Consider the formula α

(a ∨ b) ∧ c

▶ Let I2 be the interpretation

aI2 = 0
bI2 = 0
cI2 = 1

then I2 ̸|= α

▶ In fact, αI1 = 0

αI2 = (aI2 ∨ bI2) ∧ cI2

= min(max(0,0),1)
= min(0,1)
= 0

Semantics: Interpretations as sets

▶ An interpretation can also be specified as a subset of Σ,
i.e. I ⊆ Σ

▶ The intuition is that the atoms in I are considered True,
while the others are considered False:

I |= a iff a ∈ I

▶ For instance, the interpretation I

aI = T
bI = F
cI = T

can be represented as

I = {a,b}

How many interpretations do exists?

▶ Suppose there are has n different atoms
▶ Each atom is either T or F,→ there are 2n interpretations
▶ Example: given α as the formula (a ∨ b) ∧ c, there are 23 = 8 different

interpretations for α

Interpretation a b c Binay Representation Set Representation
I1 F F F ⟨0, 0, 0⟩ ∅
I2 F F T ⟨0, 0, 1⟩ {c}
I3 F T F ⟨0, 1, 0⟩ {b}
I4 F T T ⟨0, 1, 1⟩ {b, c}
I5 T F F ⟨1, 0, 0⟩ {a}
I6 T F T ⟨1, 0, 1⟩ {a, c}
I7 T T F ⟨1, 1, 0⟩ {a, b}
I8 T T T ⟨1, 1, 1⟩ {a, b, c}

▶ The interpretations correspond to all possible subsets of {a, b, c}
▶ Note: Ij |= α iff j ∈ {4, 6, 8}

Satisfiability and Validity

▶ An interpretation I is a model of α iff I |= α

▶ An interpretation I is a model of set KB of formulae KB iff
I |= α for all α ∈ KB

▶ A formula α (a set of formulae KB) is
▶ satisfiable, if there is some I that satisfies α (KB)
▶ unsatisfiable, if α is not satisfiable
▶ falsifiable, if there is some I that does not satisfy α
▶ valid (i.e. a tautology), if every I is a model of α

▶ Two formluae α, β are logically equivalent (denoted α ≡ β),
if for all I:

I |= α iff I |= β

Examples

▶ Satisfiable: a ∨ (b ∧ c)
▶ Unsatisfiable: (a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ ¬c)
▶ Falsifiable: a ∨ (b ∧ c)
▶ Valid: (a ∧ (a→ b))→ b)
▶ Logically equivalent: a ∨ (b ∧ c) ≡ (a ∨ b) ∧ (a ∨ c)

Some Consequences

Proposition: ▶ α is valid iff ¬α is unsatisfiable
▶ α is unsatisfiable iff ¬α is valid

Proposition: α ≡ β iff α↔ β is valid
Proposition: If α ≡ β, and δ is the result of replacing α in γ by

β, then γ ≡ δ.

Equivalences (I)

Commutativity α ∨ β ≡ β ∨ α
α ∧ β ≡ β ∧ α
α↔ β ≡ β ↔ α

Associativity (α ∨ β) ∨ γ ≡ α ∨ (β ∨ γ)
(α ∧ β) ∧ γ ≡ α ∧ (β ∧ γ)

Idempotence α ∨ α ≡ α
α ∧ α ≡ α

Absorption α ∨ (α ∧ β) ≡ α
α ∧ (α ∨ β) ≡ α

Distributivity α ∨ (β ∧ γ) ≡ (α ∨ β) ∧ (α ∨ γ)
α ∧ (β ∨ γ) ≡ (α ∧ β) ∨ (α ∧ γ)

Equivalences (II)

Tautology α ∨ T ≡ T
α ∨ ¬α ≡ T

Unsatisfiability α ∧ F ≡ F
α ∧ ¬α ≡ F

Neutrality α ∧ T ≡ α
α ∨ F ≡ α

Double Negation ¬¬α ≡ α

De Morgan Law ¬(α ∨ β) ≡ (¬α) ∧ (¬β)
¬(α ∧ β) ≡ (¬α) ∨ (¬β)

Implication α→ β ≡ (¬α) ∨ β
¬(α→ β) ≡ α ∧ (¬β)

Equivalence α↔ β ≡ (α→ β) ∧ (β → α)
¬(α↔ β) ≡ (¬α ∧ β) ∨ (¬β ∧ α)

Normal Forms

There exists some standardized forms of formulae:
▶ Negation Normal Form (NNF): only atoms can be negated

Example: (a ∨ (¬b)) ∧ ((¬c)→ ((¬b) ∧ d))
▶ Conjunctive Normal Form (CNF): conjunction of

disjunctions of literals (called clauses)

(l11∨l12∨. . .∨l1n1)∧(l21∨l22∨. . .∨l2n2)∧. . .∧(lm1∨lm2∨. . .∨lmnm)

Example: (a ∨ (¬b)) ∧ ((¬c) ∨ (¬b) ∨ c) ∧ (c ∨ a ∨ (¬d))
▶ Disjunctive Normal Form (DNF): disjunction of

conjunctions of literals

(l11∧l12∧. . .∧l1n1)∨(l21∧l22∧. . .∧l2n2)∨. . .∨(lm1∧lm2∧. . .∧lmnm)

Example: (a ∧ (¬b)) ∨ ((¬c) ∧ (¬b) ∧ c) ∨ (c ∧ a ∧ (¬d))

Normal Forms, cont.
▶ k-CNF: A CNF in which every clause has at most 3 literals
▶ Horn clause: clause with at most 1 atom

Example:
¬c ∨ ¬b ∨ c

▶ Horn clause may be written as

a1 ∧ ... ∧ an → b

▶ Krom clause: clause with at most 2 literals
Example:

(¬a ∨ ¬b)

▶ Krom clause may be written as

l1 → l2

▶ Can be represented as a graph, with nodes li and edges→
l1 → l2

Proposition
For every propositional formula there exists
▶ one equivalent formula in NNF
▶ one equivalent formula in DNF
▶ one equivalent formula in CNF
▶ one equivalent formula in 3-CNF.

Transformation into NNF

Apply recursively the following equivalences

¬¬α ≡ α
¬(α ∨ β) ≡ ¬α ∧ ¬β
¬(α ∧ β) ≡ ¬α ∨ ¬β
¬(α→ β) ≡ α ∧ ¬β
¬(α↔ β) ≡ (¬α ∧ β) ∨ (¬β ∧ α)

Transformation into CNF

1. Transform into NNF; then
2. Apply recursively the following equivalences

α ∨ (β ∧ γ) ≡ (α ∨ β) ∧ (α ∨ γ)
α→ β ≡ ¬α ∨ β
α↔ β ≡ (α→ β) ∧ (β → α)

Transformation into DNF

1. Transform into NNF
2. Apply recursively the following equivalences

α ∧ (β ∨ γ) ≡ (α ∧ β) ∨ (α ∧ γ)
α→ β ≡ (¬α) ∨ β
α↔ β ≡ (α→ β) ∧ (β → α)

Transformation into 3-CNF

1. Transform into CNF; then
2. Apply recursively the following equivalence (n > 3)

(l1 ∨ . . . ∨ ln) ≡ (l1 ∨ l2 ∨ y) ∧ (¬y ∨ l3 ∨ . . . ∨ ln)

where y is a new atom

Why Normal Forms?
▶ We can transform propositional formulas, in particular, we

can construct their NNF, CNF, 3-CNF and DNF
▶ DNF tells us something as to whether a formula is

satisable. If all disjuncts contain ⊥ or complementary
literals, then no model exists. Otherwise, the formula is
satisfiable

▶ CNF tells us something as to whether a formula is a
tautology. If all clauses (i.e., conjuncts) contain ⊤ or
complementary literals, then the formula is a tautology.
Otherwise, the formula is falsifiable

But,
▶ the transformation into DNF or CNF may be expensive

(exponential in time/space) Example:

(a ∧ b) ∨ (c ∧ d) CNF7→ (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d)

Satisfiability of KBs

▶ A set KB of formulae is satisfied iff I |= α for all α ∈ KB
▶ An interpretation I is a model of set KB of formulae

(denoted I |= KB) iff I |= α for all α ∈ KB
▶ A set KB of formulae is

▶ satisfiable, if there is some I that satisfies KB
▶ unsatisfiable, if KB is not satisfiable

▶ A set KB of formulae entails a formula α iff α is true in all
models of KB, i.e.

KB |= α iff I |= α for all models of KB

Some Properties of Entailment

Deduction Theorem: KB ∪ {α} |= β iff KB |= α→ β

Contraposition Theorem: KB ∪ {α} |= β iff KB ∪ {¬β} |= ¬α

Contradiction Theorem: KB |= α iff KB ∪ {¬α} is unsatisfiable

Checking Entailment by Enumeration

▶ How can we verify whether KB |= α?
▶ We enumerate all interpretations I and verify that:

1. if I is a model of KB then I is also a model of α;
or equivalently

2. KB ∪ {¬α} is not satisfied by I (contradiction theorem)

Example

Consider KB = {a,a→ b} and α = b. Let us show that KB |= α

a b a→ b KB α KB ∪ {¬α}
I1 F F T F F F
I2 F T T F T F
I3 T F F F F F
I4 T T T T T F

Hence
▶ α is true in all models of KB; or equivalently
▶ KB ∪ {¬α} is unsatisfiable

Therefore, KB |= α

Checking KB Satisfiability using analytic tableaux
▶ A tableaux is tree, where each node is a formula α
▶ Tableau Inference Rules

1. If a path contains α ∧ β then it contains α and β
2. If a path contains α ∨ β then it contains either α or β

▶ A clash is a path containing α and ¬α
▶ A tableau is clash free if there is path not being a clash
▶ A tableau is complete if no rule can be applied to a path
▶ A KB is satisfiable iff there is a clash-free and complete tableau for it

Tableau for e ∧ b ∧ (¬a ∨ c) ∧ (¬c ∨ ¬b)

¬a ∨ c

¬c ∨ ¬b

¬c ¬b

¬a c

e ∧ b

e

e b

b

Checking KB Satisfiability using DPLL algorithm
▶ For C = l1 ∧ . . . ∧ ln, C literal consistent iff not both l and ¬l occur in C for some

letter l
▶ literal l occurs pure in C iff ¬l does not occur in C

▶ C[l/⊤] is as C in which any occurrence of l is replaced with ⊤, C[l/⊥] is as C in
which any occurrence of l is replaced with ⊥, and

▶ F ∨ ⊤ is replaced with⊤, F ∨ ⊥ is replaced with F
DPLL: Davis-Putnam-Logemann-Loveland

1. Let C =
∧

F∈KB CNF (F), where CNF (F) transforms F into CNF

2. Return DPLL(C)

Function DPLL(C)
input : A formula C in CNF
output: True if C satisfiable, false otherwise

repeat
if C literal consistent then

return true
end
if (C contains a conjunct that is⊥) OR (C not literal consistent) then

return false
end
foreach conjunct in C being a literal l do C = C[l/⊤];
foreach literal l that occurs pure in C do C = C[l/⊤];

until none of the previous steps is applicable;
l : = chooseLiteral(C);
return DPLL(C[l/⊤]) OR DPLL(C[l/⊥]) ;

Checking KB Satisfiability using Resolution

▶ A formula C = C1 ∧ . . . ∧ Ci ∧ . . . ∧ Cn in CNF, where
Ci = li1 ∨ . . . ∨ liki

can be represented as a set of clauses,
where a clause is a set of literals
▶ Ci = {li1 , . . . , liki

}, C = {C1, . . . ,Cn}
▶ Resolution rule:

from clauses C = {. . . , l , . . .}, C′ = {. . . ,¬l , . . .}
infer C ∪ C′ \ {l ,¬l}

Proposition
For a KB being a set of clauses, KB unsatisfiable iff the empty
clause can be inferred.

Example

Consider C1 = {a,b}, C2 = {¬a, c}, C3 = {¬b}, C4 = {¬c}
1. from C1 and C2 infer C5 = {b, c}
2. from C4 and C3 infer C6 = {c}
3. from C6 and C4 infer C7 = ∅

Therefore, C = {C1,C2,C3,C4} is not satisfiable

Checking KB Satisfiability using ILP

▶ An alternative method for satisfiability checking consists on
relying on Integer Linear Programming (ILP)

▶ Basic idea:
▶ For a formula ϕ consider a variable xϕ taking values in {0,1}
▶ The intuition is that ϕ is true iff xϕ = 1
▶ Apply semantic preserving transformations, generating ILP

equations
▶ Check if the set of inequations has a solution

Consider a knowledge base KB
1. EQKB = ∅
2. For all ϕ ∈ KB,EQKB := EQKB ∪ {xϕ = 1, σ(ϕ)}

σ(ϕ) =

xp ∈ {0, 1} if ϕ = p

xϕ = 1− xϕ′ , σ(ϕ
′), xϕ ∈ {0, 1} if ϕ = ¬ϕ′

xϕ = min(xϕ1
, xϕ2

)

σ(ϕ1), σ(ϕ2), xϕ ∈ {0, 1} if ϕ = ϕ1 ∧ ϕ2

xϕ = max(xϕ1
, xϕ2

)

σ(ϕ1), σ(ϕ2), xϕ ∈ {0, 1} if ϕ = ϕ1 ∨ ϕ2

σ(¬ϕ1 ∨ ϕ2) if ϕ = ϕ1 → ϕ2
σ((ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)) if ϕ = ϕ1 ↔ ϕ2 .

Note1: x = min(y, z) is x ≤ y, x ≤ z, x ≥ y + z − 1

Note2: x = max(y, z) is x ≥ y, x ≥ z, x ≤ y + z

Proposition
KB satisfiable iff EQKB has a solution.

Example

Consider KB = {a,a→ b}. Let us show that KB |= b
1. Consider KB′ = KB ∪ {¬b}
2. We have to show that KB′ not satisfiable
3. Compute EQKB′

EQKB′ = {xa = 1, x¬a∨b = 1, x¬b = 1}
∪ {x¬b = 1− xb, xb ∈ {0, 1}}
∪ {x¬a + xb ≥ x¬a∨b, x¬a ≤ x¬a∨b, xb ≤ x¬a∨b}
∪ {x¬a = 1− xa, x¬a ∈ {0, 1}}

4. It can be verified that EQKB′ does not have a solution

Proposition
Checking the satisfiability of a propositional 3-CNF KB is a
NP-complete problem.

Exercise: Expert System for Automobile Diagnosis

Knowledge base
(GasInTank ∧ FuelLineOK)→ GasInEngine
(GasInEngine ∧GoodSpark)→ EngineRuns
(PowerToPlugs ∧ PlugsClean)→ GoodSpark
(BatteryCharged ∧ CablesOK)→ PowerToPlugs

Observed
¬EngineRuns,GasInTank,PlugsClean,BatteryCharged

Prove
¬FuelLineOK ∨ ¬CablesOK

First-Order Logic

Pros and Cons of Propositional Logic

▶ We can already do a lot with propositional logic
▶ Propositional logic is declarative
▶ Propositional logic allows partial/disjunctive/negated

information
▶ Propositional logic is compositional
▶ Meaning in propositional logic is context-independent

▶ But it is unpleasant that we cannot access the structure of
atomic sentences
▶ Atomic formulas of propositional logic are too atomic
▶ They are just statements which my be true or false but

which have no internal structure
▶ Propositional logic assumes the world contains facts

First-Order Logic: Basic Ideas

▶ In First Order Logic (FOL) the atomic formulas are
interpreted as statements about relationships between
objects

▶ FOL (like natural language) assumes the world contains:
Objects: people, houses, numbers, colors, baseball

games, wars, ...
Relations: red, round, prime, brother of, bigger than, part

of, comes between, ...
Functions: father of, best friend, one more than, plus, ...

Predicates and Constants

▶ Let’s consider the statements:
Mary is female
John is male
Mary and John are siblings

▶ In propositional logic the above statements are atomic
propositions:

MaryIsFemale
JohnIsMale
MaryAndJohnAreSiblings

▶ In FOL atomic statements use predicates, with constants
as argument

Female(mary)
Male(john)
Siblings(mary, john)

Variables and Quantifiers

▶ Let’s consider the statements:
Everybody is male or female
A male is not a female

▶ In FOL predicates may have variables as arguments,
whose value is bounded by quantifiers

∀x.Male(x) ∨ Female(x)
∀x.Male(x)→ ¬Female(x)

▶ Deduction (why?):
▶ Mary is not male
▶ i.e., ¬Male(mary)

Functions

▶ Let’s consider the statement:
The father of a person is male

▶ In FOL objects of the domain may be denoted by functions
applied to (other) objects:

∀x.Male(father(x))

Syntax of FOL: atomic sentences

▶ Countably infinite supply of symbols (signature):
▶ variable symbols: x , y , z, ...
▶ n-ary function symbols: f ,g,h, ...
▶ individual constants: a,b, c, ...
▶ n-ary predicate symbols: P,Q,R, ...

Term:

t −→ x (variable)
| a (constant)
| f (t1, ..., tn) (function application)

Ground Term: terms that do not contain variables
Atomic Formula:

α −→ P(t1, ..., tn) (atomic formula)

Ground Atom: Atom that does not contain variables

Examples

Term: father(x),+(x, y)
Ground Term: father(john),+(2,3)

Atom: Loves(john, x)
Ground Atom: Loves(john,mary)

Syntax of FOL

Formula:
α, β −→ P(t1, ..., tn) (atomic formula)

| ⊥ (false)
| ⊤ (true)
| ¬α (negation)
| α ∧ β (conjunction)
| α ∨ β (disjunction)
| α→ β (implication)
| α↔ β (equivalence)
| ∀x .α (universal quantification)
| ∃x .α (existential quantification)

Ground Formula: Formula that does not contain variables

Examples: ▶ Everyone in Italy is smart:
∀x.In(x, italy)→ Smart(x)

▶ Someone in France is smart:
∃x.In(x, france) ∧ Smart(x)

Open, Closed and Ground Formula

▶ A formula with a free variable (not bounded by a quantifier)
is called open

∀x .[P(x , y)↔ [∃x .∃z.[Q(x , y , z)→ R(x , y)]]]

▶ A formula with no free variables is called closed

∀y .∀x .[P(x , y)↔ [∃x .∃z.[Q(x , y , z)→ R(x , y)]]]

▶ A formula with no variables is called ground

[P(a,b)↔ [Q(a,b, c)→ R(a,b)]]

Semantics of FOL: intuition

▶ Just like in propositional logic, a (complex) FOL formula is
either true or false with respect to a given interpretation

▶ An interpretation specifies referents for

constant symbols 7→ objects
function symbols 7→ functional relations
predicate symbol 7→ relations

▶ An atomic sentence P(t1, . . . , tn) is true in a given
interpretation iff the objects referred to by t1, . . . , tn are in
the relation referred to by the predicate P

▶ An interpretation in which a formula is true is called a
model for the formula

Semantics of FOL: Interpretations

▶ Interpretation: I = ⟨∆, ·I⟩
▶ ∆ is an arbitrary non-empty set of objects
▶ ·I is a function that maps

▶ any constant a into an object in ∆:

aI ∈ ∆

▶ any n-ary function symbol f to a function:

fI : ∆n → ∆

▶ any n-ary predicate symbol P to a relation:

PI ⊆ ∆n

Interpretation Example
Consider

∀x.∃y.Loves(x, friendOf(y))
Loves(a, b)

▶ Interpretation: I = ⟨∆, ·I⟩
▶ ∆ = {john,mary, tim, claudia}
▶ mapping of constants:

aI = john
bI = mary

▶ mapping of functions:

friendOf I(d) =

mary if d = john
claudia if d = mary
john if d = tim
tim if d = claudia

▶ mapping of predicates:

LovesI = {⟨john,mary⟩, ⟨john, claudia⟩, ⟨mary, tim⟩, ⟨claudia, tim⟩}

Example (cont.)

The same interpretation can also be represented as:

▶ Interpretation: I = ⟨∆, ·I⟩
▶ ∆ = {john,mary, tim, claudia}
▶ mapping of constants:

aI = john
bI = mary

▶ mapping of functions:

{friendOf(john,mary), friendOf(mary, claudia),
friendOf(tim, john), friendOf(claudia, tim)}

▶ mapping of predicates:

{Loves(john,mary),Loves(john, claudia),
Loves(mary, tim),Loves(claudia, tim)}

Semantic of FOL: interpretation of ground terms

▶ Interpretation of ground terms

f (t1, . . . , tn)
I = f I(t1I , . . . , tnI)

Example:

(friendOf(a))I = friendOfI(aI)
= friendOfI(john)
= mary

Semantic of FOL: Satisfaction (Model)

▶ Satisfaction (model of) of ground atoms P(t1, . . . , tn)

I |= P(t1, . . . , tn) iff ⟨t1I , . . . , tnI⟩ ∈ PI

Example:
▶ I |= Loves(a,b)

I |= Loves(a,b) iff ⟨aI ,bI⟩ ∈ LovesI

iff ⟨john,mary⟩ ∈ LovesI

▶ I ̸|= Loves(b,a)

I ̸|= Loves(b,a) iff ⟨bI ,aI⟩ ̸∈ LovesI

iff ⟨mary, john⟩ ̸∈ LovesI

Semantic of FOL: Variable Assignments
▶ An Interpretation I = ⟨∆, ·I⟩ maps

▶ a variable x into an object in ∆:

xI ∈ ∆

▶ Let x be a variable and let d ∈ ∆ be an object. Then

Id
x

is an interpretation, which is as I, except that x is mapped
into d : i.e.

zI
d
x =

{
zI if z ̸= x
d if z = x

For instance,
aI

d
x = aI

f I
d
x = f I

PI
d
x = PI

Interpretation Example
Consider: Loves(x, y)

▶ Interpretation: I = ⟨∆, ·I⟩
▶ ∆ = {john,mary, tim, claudia}
▶ mapping of variables:

xI = john
yI = mary

▶ mapping of predicates:

LovesI = {⟨john,mary⟩, ⟨mary, tim⟩}

▶ I |= Loves(x, y)

I |= Loves(x, y) iff ⟨xI , yI⟩ ∈ LovesI

iff ⟨john,mary⟩ ∈ LovesI

▶ Iclaudia
y ̸|= Loves(x, y)

Iclaudia
y ̸|= Loves(x, y) iff ⟨xI

claudia
y , yI

claudia
y ⟩ ̸∈ LovesI

claudia
y

iff ⟨xI , claudia⟩ ̸∈ LovesI

iff ⟨john, claudia⟩ ̸∈ LovesI

Semantics of FOL: Satisfiability of formulae

▶ An interpretation I satisfies (is a model of) a formula α (α
is true in I), denoted I |= α iff:

I |= P(t1, . . . , tn) iff ⟨t1I , . . . , tnI⟩ ∈ PI

I |= ¬α iff I ̸|= α

I |= α ∧ β iff I |= α and I |= β

I |= α ∨ β iff I |= α or I |= β

I |= α→ β iff I |= ¬α ∨ β
I |= α↔ β iff I |= (α→ β) ∧ (β → α)

Semantics of FOL: Satisfiability of formulae (cont.)

I |= ∀x .α iff for all d ∈ ∆, Id
x |= α

I |= ∃x .α iff for some d ∈ ∆, Id
x |= α

▶ I satisfies (is a model of) a set of formulae KB (denoted
I |= KB) iff for each α ∈ KB, I |= α

Example
Interpretation I = ⟨∆, ·I⟩ with

∆ = {d1, . . . ,dn} with n > 1
xI = d1 yI = d2

aI = d1 bI = d1

BlockI = {d1}
RedI = ∆

1. I |= Block(a) ∨ ¬Block(a) ?
2. I |= Block(x)→ ¬Block(y) ?
3. I |= ∀x .∃y .[Block(x)→ Red(y)] ?
4. For KB = {Block(a),Block(b),∀x.[Block(x)→ Red(x)]}

I |= KB ?

Satisfiability and Validity

Similarly as in propositional logic, a formula α can be
satisfiable, unsatisfiable, falsifiable or valid
▶ α is satisfiable iff there is some model I of α
▶ α is unsatisfiable iff there is no model I of α
▶ α is falsifiable iff there is some I not satisfying α
▶ α is valid (i.e., a tautology) iff every interpretation I is a

model of α

Equivalence

Analogously, two formulas are logically equivalent (denoted
α ≡ β) if for all I we have

I |= α iff I |= β

Note that P(x) ̸≡ P(y).
Indeed, consider Interpretation I = ⟨∆, ·I⟩ with

∆ = {d1,d2}
xI = d1 yI = d2

PI = {d1}

Entailment

Entailment is defined similarly as in propositional logic.
▶ A formula α entails a formula β (denoted α |= β) iff β is true

in all models of α
▶ A set KB of formulae entails a formula α (denoted KB |= α)

iff α is true in all models of KB

Proposition: KB |= α iff KB ∪ {¬α} is not satisfiable.

Example

KB = { Human(socrates),
∀x .[Human(x)→ Mortal(x)] }

KB |= Mortal(socrates) ?

Yes.

▶ Consider a model I = ⟨∆, ·I⟩ of KB

▶ Then I |= Human(socrates), i.e. socratesI ∈ HumanI

▶ Then I |= ∀x .[Human(x)→ Mortal(x)], i.e. HumanI ⊆ MortalI

▶ As a consequence, socratesI ∈ MortalI ,
i.e. I |= Mortal(socrates)

▶ Therefore, I |= Mortal(socrates) in any model I of KB,
i.e. KB |= Mortal(socrates)

Example

KB = { Block(a),Block(b),
∀x .∃y .[Block(x)→ Red(y)] }

KB |= Red(b) ?

No.
Consider I = ⟨∆, ·I⟩ with

∆ = {d1,d2}
aI = d1 bI = d2

BlockI = {d1,d2}
RedI = {d1}

Then I |= KB, but I ̸|= Red(b).

More Examples

▶ |= ∀x .[P(x) ∨ ¬P(x)]
▶ P(a) |= ∃x .P(x)
▶ ∃x .[P(x) ∧ [P(x)→ Q(x)]] |= ∃x .Q(x)

Equality

▶ Equality is a special predicate
▶ Syntax: t1 = t2, for terms t1 and t2
▶ Semantics: I |= t1 = t2 iff t1I = t2I , i.e., t1 and t2 refer to

the same object
▶ Example: two humans are siblings iff they have the same

parents

∀x.∀y.[Sibling(x, y) ↔ [¬(x = y)∧
∃m.∃f.[¬(m = f) ∧ Parent(m, x) ∧ Parent(f, x)∧
Parent(m, y) ∧ Parent(f, y)]]]

Notes on Universal Quantification

▶ “Everyone in Italy is smart”:

∀x.[In(x, italy)→ Smart(x)]

▶ Typically,→ is the main connective with ∀
▶ Common mistake: using ∧ as the main connective with ∀

∀x.[In(x, italy) ∧ Smart(x)]

means “Everyone is in Italy and everyone is smart”

Notes on Existential Quantification

▶ “Someone in France is smart”:

∃x.[In(x, france) ∧ Smart(x)]

▶ Typically, ∧ is the main connective with ∃
▶ Common mistake: using→ as the main connective with ∃

∃x.[In(x, france)→ Smart(x)]

is true if “there is no one in France”

Properties of quantifiers

▶ ∀x .∀y .α is the same as ∀y .∀x .α (why?)
▶ ∃x .∃y .α is the same as ∃y .∃x .α (why?)
▶ ∃x .∀y .α is not the same as ∀y .∃x .α (why?)

▶ ∃x.∀y.Loves(x, y)
“There is a person who loves everyone in the world”

▶ ∀y.∃x.Loves(x, y)
“Everyone in the world is loved by at least one person” (not
necessarily the same)

▶ Quantifier duality

∀x.Loves(x,beer) ≡ ¬∃x.¬Loves(x,beer)
∃x.Loves(x, spinach) ≡ ¬∀x.¬Loves(x, spinach)

Equivalences
All propositional equivalences +

(∀x .α) ∧ β ≡ ∀x .(α ∧ β) if x not free in β
(∀x .α) ∨ β ≡ ∀x .(α ∨ β) if x not free in β
(∃x .α) ∧ β ≡ ∃x .(α ∧ β) if x not free in β
(∃x .α) ∨ β ≡ ∃x .(α ∨ β) if x not free in β

(∀x .α) ∧ (∀x .β) ≡ ∀x .(α ∧ β)
(∃x .α) ∨ (∃x .β) ≡ ∃x .(α ∨ β)

¬∀x .α ≡ ∃x .¬α
¬∃x .α ≡ ∀x .¬α

Note:

(∀x .α) ∨ (∀x .β) ̸≡ ∀x .(α ∨ β)
(∃x .α) ∧ (∃x .β) ̸≡ ∃x .(α ∧ β)

Equivalences (cont.)

▶ Let βt
x denote the formula obtained from β by replacing all

free occurrences of x with the term t
▶ Let Qi ∈ {∀, ∃}

(Q1x .α) ∨ (Q2x .β) ≡ Q1x .Q2y .(α ∨ βy
x) for new variable y

(Q1x .α) ∧ (Q2x .β) ≡ Q1x .Q2y .(α ∧ βy
x) for new variable y

For instance,

(∀x .p(x)) ∨ (∀x .q(x)) ≡ ∀x .∀y .(p(x) ∨ q(y))
(∃x .p(x)) ∧ (∃x .q(x)) ≡ ∃x .∃y .(p(x) ∧ q(y))

The Prenex Normal Form

Quantifier prefix + (quantifier free) matrix

Q1x1.Q2x2. . . .Qnxn.α

where Qi ∈ {∀,∃} and α does not contain any quantifier

1. Elimination of↔ and→
2. Push ¬ inwards

3. Pull quantifiers outwards

For instance

¬∀x.((∀y.∃z.P(x, y, z))→ ∃x.Q(x)) 7→ ¬∀x.(¬(∀y.∃z.P(x, y, z)) ∨ ∃x.Q(x))

7→ ∃x.(¬(¬(∀y.∃z.P(x, y, z)) ∨ ∃x.Q(x)))

7→ ∃x.(¬¬(∀y.∃z.P(x, y, z)) ∧ ¬∃x.Q(x))

7→ ∃x.((∀y.∃z.P(x, y, z)) ∧ ∀x.¬Q(x))

7→ ∃x.∀y.∃z.(P(x, y, z) ∧ ∀x.¬Q(x))

7→ ∃x.∀y.∃z.∀u.(P(x, y, z) ∧ ¬Q(u))

Skolemization
Elimination of ∃ in a prenex normal form

∃x .α 7→ αc
x for new constant c

∀x∃y .α 7→ ∀x .αf (x)
y for new function symbol f

For instance,

∃x.∀y.∃z.∀u.(P(x, y, z) ∧ ¬Q(u)) 7→ ∀y.∃z.∀u.(P(c, y, z) ∧ ¬Q(u))
∀y.∃z.∀u.(P(c, y, z) ∧ ¬Q(u)) 7→ ∀y.∀u.(P(c, y, f(y)) ∧ ¬Q(u))

Proposition: Let α be a proposition in prenex normal form and let
sk(α) its skolemization. Then α is satisfiable iff sk(α) is
satisfiable.

Hence any formula can be transformed into a satisfiability preserving
form (α quantifier free):

∀x1.∀x2. . . .∀xn.α

Herbrand Interpretation

Consider a formula β := ∀x1.∀x2. . . .∀xn.α, where α is quantifier free.

Hebrand universe: the smallest set Uβ of terms inductively defined as:
▶ if c is a constant that occurs in α then c ∈ Uβ . If no

constant occurs in α then c ∈ Uβ for a new constant c
▶ if f is an n-ary function symbol occurring in α and

t1, . . . , tn ∈ Uβ , then f (t1, . . . , tn) ∈ Uβ

Hebrand base: the set Bβ of ground atoms such that
▶ if P is an n-ary predicate symbol occurring in α and

t1, . . . , tn ∈ Uβ , then P(t1, . . . , tn) ∈ Bβ

Hebrand Interpretation: any subset I of Bβ (A ∈ I means that A is true in I)

Herbrand Models

A Herbrand model is a Herbrand interpretion that is a model.
For instance, given

β := ∀x .∀y .(P(f (x)) ∧ Q(g(y) ∨ P(a))

Hebrand universe: Uβ = {a, f (a), g(a), f (f (a)), f (g(a)), g(f (a)), . . .}
Hebrand base: Bβ = {P(a),Q(a),P(f (a)),P(g(a)),Q(f (a)),Q(g(a)), . . .}

Hebrand Interpretation: Examples,

I1 = {P(a)}
I2 = {P(g(a)),Q(f (a))}

Hebrand models: Examples,

I1 |= β

I2 ̸|= β

Proposition: ∀x1.∀x2. . . . ∀xn.α (α quantifier free) is satisfiable iff it has a Hebrand
model. Hence, any formula is satisfiable iff it has a Herbrand model.

The Conjunctive Normal Form

∀ prefix + (quantifier free) matrix

∀x1.∀x2. . . .∀xn.(C1 ∧ C2 ∧ . . . ∧ Ck)

where each Cj (clause) is a disjunction of literals
Proposition: Any formula can be transformed into a satisfiability

preserving Conjunctive Normal Form.

1. Transform the formula into a prenex normal form
2. Apply skolemization
3. Transform the quantifier free matrix into conjunctive normal

form in a similar way as for propositional logic

Excercise

KB = {Person(john), Person(andrea), Female(susan),Male(bill)}
∪ {Loves(andrea, bill), Loves(susan, andrea),HasFriend(john, susan),HasFriend(john, andrea)}
∪ {∀x.Person(x)↔ (Male(x) ∨ Female(x),¬∃x.Male(x) ∧ Female(x)}

KB |= ∃y∃z.HasFriend(john, y) ∧ Female(y) ∧ Loves(y, z) ∧ Male(z) ?

Introduction to Semantic Web Languages (SWLs)

The Semantic Web Family of Languages

▶ Semantic Web family of languages widely used to specify ontologies
▶ Wide variety of languages

▶ RDFS: Triple language, -Resource Description Framework

▶ The logical counterpart is ρdf

▶ RIF: Rule language, -Rule Interchange Format,

▶ Relate to the Logic Programming (LP) paradigm

▶ OWL 2: Conceptual language, -Ontology Web Language

▶ Relate to Description Logics (DLs)

The cases of RDF and RDFS

Resource Description Framework Schema (RDFS)

▶ RDFS: W3C standard and popular logic for KR
▶ Statements

▶ Triples of the form (s,p,o)
▶ Informally, binary predicate p(s,o)

(fever,hasTreatment,paracetamol)

▶ Special predicates: typing and specialisations, etc.

(paracetamol, type,antipyretic)
(antipyretic, sc,drug)

▶ Knowledge Graphs may be seen as a special case

The logic of RDF & RDFS: ρdf

Syntax:
▶ Alphabets:

▶ U (RDF URI references)
▶ B (Blank nodes)
▶ L (Literals)

▶ For simplicity we will denote unions of these sets simply
concatenating their names

▶ Terms: UBL (a,b, . . . ,w)
▶ Variables: B (x , y , z)
▶ Triple:

(s,p,o) ∈ UBL× U× UBL

▶ s,o /∈ ρdf
▶ s subject, p predicate, o object

▶ Note: e.g. (type, sp,p) not allowed

▶ Graph/Knowledge Base G: set of triples τ
▶ Ground graph: no blank nodes, i.e. variables
▶ Map (or variable assignment):

▶ µ : UBL→ UBL, µ(t) = t , for all t ∈ UL

µ(G) = {(µ(s), µ(p), µ(o)) | (s,p,o) ∈ G}

▶ Map µ from G1 to G2, and write µ : G1 → G2
▶ if µ is such that µ(G1) ⊆ G2

Example

G = {(paracetamol, type,antipyretic),

(antipyretic, sc,drugTreatment),

(morphine, type,opioid), (opioid, sc,drugTreatment),

(drugTreatment, sc,treatment),

(brainTumour, type,tumour),

(hasDrugTreatment, sp,hasTreatment),

(hasTreatment, dom,illness),

(hasTreatment, range,treatment),

(hasDrugTreatment, range,drugTreatment),

(fever,hasDrugTreatment,paracetamol)

(brainTumour,hasDrugTreatment,morphine) }

Example (Ontology-based Multimedia Information
Retrieval)

G =

 (o1,IsAbout,snoopy) (o2,IsAbout,woodstock)
(snoopy, type,dog) (woodstock, type,bird)
(dog, sc,animal) (bird, sc,animal)

ρdf (Intentional) Semantics

ρdf interpretation:

I = ⟨∆R,∆DP ,∆C,∆L,P[[·]],C[[·]], ·I⟩ ,

1. ∆R are the resources
2. ∆DP are property names
3. ∆C ⊆ ∆R are the classes
4. ∆L ⊆ ∆R are the literal values and contains all the literals

in L ∩ V
5. P[[·]] is a function P[[·]] : ∆DP → 2∆R×∆R

6. C[[·]] is a function C[[·]] : ∆C → 2∆R

7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆DP ,
where ·I is the identity for literals; and

8. ·I maps each variable x ∈ B into a value xI ∈ ∆R

Models

Intuitively,
▶ A ground triple (s,p,o) in an RDF graph G will be true

under the interpretation I if
▶ p is interpreted as a property name
▶ s and o are interpreted as resources
▶ the interpretation of the pair (s,o) belongs to the extension

of the property assigned to p
▶ Blank nodes, i.e. variables, work as existential variables: a

triple ((x ,p,o) with x ∈ B would be true under I if
▶ there exists a resource s such that (s,p,o) is true under I

ρdf model/entailment

I G if and only if I satisfies conditions

Simple:

1. for each (s, p, o) ∈ G, pI ∈ ∆DP and (sI , oI) ∈ P[[pI]]

Subproperty:

1. P[[spI]] is transitive over ∆DP

2. if (p, q) ∈ P[[spI]] then p, q ∈ ∆DP and P[[p]] ⊆ P[[q]]

Subclass:
1. P[[scI]] is transitive over ∆C
2. if (c, d) ∈ P[[scI]] then c, d ∈ ∆C and C[[c]] ⊆ C[[d]]

Typing I:

1. x ∈ C[[c]] if and only if (x, c) ∈ P[[typeI]];
2. if (p, c) ∈ P[[domI]] and (x, y) ∈ P[[p]] then x ∈ C[[c]]
3. if (p, c) ∈ P[[rangeI]] and (x, y) ∈ P[[p]] then y ∈ C[[c]]

Typing II:

1. for each e ∈ ρdf, eI ∈ ∆DP ;

2. if (p, c) ∈ P[[domI]] then p ∈ ∆DP and c ∈ ∆C

3. if (p, c) ∈ P[[rangeI]] then p ∈ ∆DP and c ∈ ∆C

4. if (x, c) ∈ P[[typeI]] then c ∈ ∆C.

G H if and only if every model of G is also a model of H

Note

▶ Often P[[spI]] (resp. C[[scI]]) is also reflexive over ∆P
(resp. ∆C)
▶ We omit this requirement and, thus, do NOT support

inferences such as

G |= (a, sp,a)
G |= (a, sc,a)

which anyway are of marginal interest

Example ((Model/Entailment))

G =

 (o1, IsAbout, snoopy) (o2, IsAbout, woodstock)
(snoopy, type, dog) (woodstock, type, bird)
(dog, sc, animal) (bird, sc, animal)

I = ⟨∆R ,∆P ,∆C ,∆L, P[[·]],C[[·]], ·I⟩

∆R = {o1, o2, snoopy,woodstock, dog, bird, animal}
∆P = {IsAbout, type, sc}
∆C = {dog, bird, animal}

P[[IsAbout]] = {⟨o1, snoopy⟩, ⟨o2,woodstock⟩}
P[[type]] = {⟨snoopy, dog⟩, ⟨woodstock, bird⟩, ⟨snoopy, animal⟩, ⟨woodstock, animal⟩}

P[[sc]] = {⟨dog, animal⟩, ⟨bird, animal⟩}
C[[dog]] = {snoopy}
C[[bird]] = {woodstock}

C[[animal]] = {snoopy,woodstock}

tI = t for all t ∈ UL

I |= G I is a model of G

G |= (snoopy, type, animal) In all models I of G, ⟨snoopy, animal⟩ ∈ P[[type]]

Deduction System for RDF & RDFS

▶ The system is arranged in groups of rules that captures the
semantic conditions of models

▶ In every rule, A,B,C,X , and Y are meta-variables
representing elements in UBL

▶ An instantiation of a rule is a uniform replacement of the
metavariables occurring in the triples of the rule by
elements of UBL, such that all the triples obtained after the
replacement are well formed RDF triples

Deductive System for ρdf
G H

1. Simple:
(a) G

G′ for a map µ : G′ → G (b) G
G′ for G′ ⊆ G

2. Subproperty:
(a) (A,sp,B),(B,sp,C)

(A,sp,C)
(b) (D,sp,E),(X ,D,Y)

(X ,E,Y)

3. Subclass:
(a) (A,sc,B),(B,sc,C)

(A,sc,C)
(b) (A,sc,B),(X ,type,A)

(X ,type,B)

4. Typing:
(a) (D,dom,B),(X ,D,Y)

(X ,type,B)
(b) (D,range,B),(X ,D,Y)

(Y ,type,B)

5. Implicit Typing:

(a) (A,dom,B),(D,sp,A),(X ,D,Y)
(X ,type,B)

(b) (A,range,B),(D,sp,A),(X ,D,Y)
(Y ,type,B)

Closure of G:
Cl(G) = {τ | G ∗ τ}

where ∗ is as except rule (1a) is excluded

▶ Notion of proof:
▶ Let G and H be graphs
▶ Then G ⊢ H iff there is a sequence of graphs P1, . . . ,Pk

with P1 = G and Pk = H, and for each j (2 ≤ j ≤ k) one of
the following holds:

1. there exists a map µ : Pj → Pj−1 (rule (1a));
2. Pj ⊆ Pj−1 (rule (1b));
3. there is an instantiation R

R′ of one of the rules (2)–(5), such
that R ⊆ Pj−1 and Pj = Pj−1 ∪ R′.

▶ The sequence of rules used at each step (plus its
instantiation or map), is called a proof of H from G.

Proposition (Soundness and completeness)
The RDFS proof system ⊢ is sound and complete for |=, that is,
G ⊢ H iff G |= H.

Example (Proof)

G =

 (o1, IsAbout , snoopy) (o2, IsAbout ,woodstock)
(snoopy , type, dog) (woodstock , type, bird)
(dog, sc, animal) (bird , sc, animal)

Let us proof that

G |= (snoopy , type, animal)

G ⊢ (snoopy , type, dog) (1) Rule Simple (b)
G ⊢ (dog, sc, animal) (2) Rule Simple (b)
G ⊢ (snoopy , type, animal) (3) Rule SubClass (b) applied to (1) + (2)

Some ρdf Properties
1. Every ρdf-graph is satisfiable (i.e. has canonical model)

▶ RDFS is paraconsistent

2. G H if and only if G |= H
3. The closure of G is unique and |Cl(G)| ∈ Θ(|G|2)
4. Deciding G H is an NP-complete problem

5. If H is ground, then G H if and only if H ⊆ Cl(G)

6. There is no triple τ such that ∅ |= τ

7. RDFS can represent only positive statements,
e.g. “Paracetamol is a treatment for fever”
▶ RDFS with negative statements,

see [Straccia and Casini, 2022]
“Opioids and antipyretics are disjoint classes"
“Radio therapies are non drug treatments"
“Ebola has no treatment"

▶ Note: “Paracetamol is not a treatment for Ebola"
▶ Can not be inferred (under OWA)
▶ Can be under CWA, but CWA is not acceptable for RDFS

RDFS CQ Answering

▶ Conjunctive query: is a Datalog-like rule of the form

q(x)← ∃y.τ1, . . . , τn

where τ1, . . . , τn are triples in which variables in x and y
may occur (we may omit ∃y)

▶ The answer set of CQ q is

ans(q,G) = {t | G ∪ {q} |= q(t)}

▶ Example:

q(x, y)← (x, creates, y), (x, type, Flemish), (x, paints, y), (y, exhibited, Uffizi)

“Retrieve all the artifacts x created by Flemish artists y ,
being exhibited at Uffizi Gallery"

▶ We will also write a query as

q(x)← ∃y.φ(x,y)

where φ(x,y) is τ1, . . . , τn

▶ Furthermore, q(x) is called the head of the query, while
∃y.φ(x,y) is is called the body of the query

▶ Disjunctive query (or, union of conjunctive queries) q: is,
as usual, a finite set of conjunctive queries in which all the
rules have the same head

▶ Example

q(x, y) ← (x, creates, y), (x, type, Flemish), (x, paints, y), (y, exhibited,Uffizi)

q(x, y) ← (x, creates, y), (x, type, Flemish), (x, paints, y), (y, exhibited, Louvre)

“Retrieve all the artifacts x created by Flemish artists y ,
being exhibited either at Uffizi Gallery or at the Louvre
Museum"

RDFS Query Answering in practice

▶ A simple query answering procedure for RDFS graphs is
the following:
▶ Compute the closure of a graph off-line
▶ Store the RDFs triples into a Relational database
▶ Translate the query into a SQL statement
▶ Execute the SQL statement over the relational database

▶ In practice, some care should be in place due to the large
size of data: ≥ 109 triples

▶ To date, several implmented systems exists

The case of OWL 2

The Web Ontology Language OWL 2
▶ OWL 2 is a family of the object oriented languages

class Person partial Human

restriction (hasName someValuesFrom String)

restriction (hasBirthPlace someValuesFrom Geoplace)

“The class Person is a subclass of class Human and has two attributes: hasName having a string as
value, and hasBirthPlace whose value is an instance of the class Geoplace”.

▶ Description Logics are the logics that stand behind OWL 2
▶ OWL languages differentiate in syntax and computational complexity of reasoning problems

OWL 2 Profiles

OWL 2 EL ▶ Useful for large size of properties and/or classes
▶ The EL acronym refers to the EL family of DLs
▶ Basic reasoning problems solved in Poly-time

OWL 2 QL ▶ Useful for very large volumes of instance data
▶ Conjunctive query answering via query rewriting and

SQL
▶ OWL 2 QL relates to the DL family DL-Lite
▶ Query answering in LOGSPACE w.r.t. data complexity

(size of facts)

OWL 2 RL ▶ Useful for scalable reasoning without sacrificing too
much expressive power

▶ OWL 2 RL maps to Datalog (an LP language)
▶ Computational complexity: same as for Datalog,

Poly-time w.r.t. data complexity (size of facts), EXPTIME
w.r.t. combined complexity (size of knowledge base)

Description Logics (DLs)

The logics behind OWL 2 and its profiles, http://dl.kr.org/

▶ Concept/Class: are unary predicates
▶ Role or attribute: binary predicates
▶ Taxonomy: Concept and role hierarchies can be expressed
▶ Individual: constants
▶ Operators: to build complex classes out from class names

http://dl.kr.org/

▶ Basic ingredients:
▶ a:C, called concept assertion, meaning that individual a is

an instance of concept/class C

a:Person ⊓ ∃hasChild.Femal

▶ (a,b):R, called role assertion, meaning that the pair of
individuals ⟨a,b⟩ is an instance of the property/role R

(tom,mary):hasChild

▶ C ⊑ D, called General Concept Inclusion (GCI), meaning
that the class C is a subclass of class D

Father ⊑ Male ⊓ ∃hasChild.Person

Example (Toy Example)

Sex = Male ⊔ Female
Male ⊓ Female ⊑ ⊥

Person ⊑ Human ⊓ ∃hasSex .Sex
MalePerson = Person ⊓ ∃hasSex .Male

functional(hasSex)

umberto:Person ⊓ ∃hasSex .¬Female

KB |= umberto:MalePerson

The DL Family

▶ A given DL is defined by set of concept and role forming operators
▶ Basic language: ALC (Attributive Language with Complement)

Syntax Semantics Example
C,D → ⊤ | ⊤(x)

⊥ | ⊥(x)
A | A(x) Human

C ⊓ D | C(x) ∧ D(x) Human ⊓ Male
C ⊔ D | C(x) ∨ D(x) Nice ⊔ Rich
¬C | ¬C(x) ¬Meat
∃R.C | ∃y.R(x, y) ∧ C(y) ∃has_child.Blond
∀R.C ∀y.R(x, y)⇒ C(y) ∀has_child.Human

C ⊑ D ∀x.C(x)⇒ D(x) Happy_Father ⊑ Man ⊓ ∃has_child.Female
a:C C(a) John:Happy_Father

DL Semantics

▶ Semantics is given in terms of an interpretation I = (∆I , ·I), where

▶ ∆I is the domain (a non-empty set)
▶ ·I is an interpretation function that maps:

▶ Concept (class) name A into a subset AI of ∆I
▶ Role (property) name R into a subset RI of ∆I ×∆I

▶ Individual name a into an element of ∆I

▶ Interpretation function ·I is extended to concept
expressions:

⊤I = ∆I

⊥I = ∅
(C1 ⊓ C2)

I = C1
I ∩ C2

I

(C1 ⊔ C2)
I = C1

I ∪ C2
I

(¬C)I = ∆I \ CI

(∃R.C)I = {x ∈ ∆I | ∃y .⟨x , y⟩ ∈ RI ∧ y ∈ CI}
(∀R.C)I = {x ∈ ∆I | ∀y .⟨x , y⟩ ∈ RI ⇒ y ∈ CI}

▶ Example: assume I = (∆I , ·I) such that

∆I = {a,b, c,d ,e, f ,1,2,4,5,8}
PersonI = {a,b, c,d}
BlondeI = {b,d}

hasChildI = {⟨a,b⟩, ⟨a, c⟩, ⟨c,d⟩, ⟨b, c⟩}

▶ What is the interpretation of Person ⊓ ∃hasChild .Blond ?

(Person ⊓ ∃hasChild.Blond)I

= PersonI ∩ {x | ∃y.⟨x, y⟩ ∈ hasChildI ∧ y ∈ BlondI}
= {a, b, c, d} ∩ {x | ∃y.⟨x, y⟩ ∈ {⟨a, b⟩, ⟨a, c⟩, ⟨c, d⟩, ⟨b, c⟩} ∧ y ∈ {b, d}}
= {a, b, c, d} ∩ {a, c}
= {a, c}

▶ Finally, we say that
▶ I is a model of C ⊑ D, written I |= C ⊑ D, iff CI ⊆ DI
▶ I is a model of a:C, written I |= a:C, iff aI ∈ CI
▶ I is a model of (a, b):R, written I |= (a, b):R, iff ⟨aI , bI⟩ ∈ RI
▶ I is a model of a = b , written I |= a = b, iff aI = bI

▶ I is a model of a ̸= b , written I |= a ̸= b, iff aI ̸= bI

DLs and First-Order-Logic

▶ Satisfiability preserving ALC mapping to FOL: introduce
▶ a unary predicate A for an atomic concept A
▶ a binary predicate R for a role R

▶ Translate as follows

t(⊤, x) 7→ true
t(⊥, x) 7→ false
t(A, x) 7→ A(x)

t(C1 ⊓ C2, x) 7→ t(C1, x) ∧ t(C2, x)
t(C1 ⊔ C2, x) 7→ t(C1, x) ∨ t(C2, x)

t(¬C, x) 7→ ¬t(C, x)
t(∃R.C, x) 7→ ∃y .R(x , y) ∧ t(C, y)
t(∀R.C, x) 7→ ∀y .R(x , y)⇒ t(C, y)
t(C ⊑ D) 7→ ∀x .t(C, x)⇒ t(D, x)

t(a:C) 7→ t(C, a)
t((a, b):R) 7→ R(a, b)

▶ Example:

t(HappyFather ⊑ Man ⊓ ∃hasChild .Female) =
∀x .HappyFather(x)⇒ (Man(x) ∧ (∃y .hasChild(x , y) ∧ Female(y)))

t(a:Man ⊓ ∃hasChild .Female) =
Man(a) ∧ (∃y .hasChild(a, y) ∧ Female(y))

Note on DL Naming
AL: C,D −→ ⊤ | ⊥ |A |C ⊓ D | ¬A | ∃R.⊤ |∀R.C
C: Concept negation, ¬C. Thus, ALC = AL+ C
S: Used for ALC with transitive roles R+

U : Concept disjunction, C1 ⊔ C2

E : Existential quantification, ∃R.C
H: Role inclusion axioms, R1 ⊑ R2, e.g. is_component_of ⊑ is_part_of

N : Number restrictions, (≥ n R) and (≤ n R), e.g. (≥ 3 has_Child) (has
at least 3 children)

Q: Qualified number restrictions, (≥ n R.C) and (≤ n R.C),
e.g. (≤ 2 has_Child .Adult) (has at most 2 adult children)

O: Nominals (singleton class), {a}, e.g. ∃has_child .{mary}.
Note: a:C equiv to {a} ⊑ C and (a, b):R equiv to {a} ⊑ ∃R.{b}

I: Inverse role, R−, e.g. isPartOf = hasPart−

F : Functional role, f , e.g. functional(hasAge)

R+: transitive role, e.g. transitive(isPartOf)

For instance,

SHIF = S +H+ I + F = ALCR+HIF OWL-Lite
SHOIN = S +H+O + I +N = ALCR+HOIN OWL-DL
SROIQ = S +R+O + I +Q = ALCR+ROIN OWL 2

Semantics of Additional Constructs

H: Role inclusion axioms, I |= R1 ⊑ R2 iff R1
I ⊆ R1

I

N : Number restrictions,
(≥ n R)I = {x ∈ ∆I : |{y | ⟨x , y⟩ ∈ RI}| ≥ n},
(≤ n R)I = {x ∈ ∆I : |{y | ⟨x , y⟩ ∈ RI}| ≤ n}

Q: Qualified number restrictions,
(≥ n R.C)I = {x ∈ |{y | ⟨x , y⟩ ∈ RI ∧ y ∈ CI}| ≥ n},
(≤ n R.C)I = {x ∈ ∆I : |{y | ⟨x , y⟩ ∈ RI ∧ y ∈ CI}| ≤ n}

O: Nominals (singleton class), {a}I = {aI}

I: Inverse role, (R−)I = {⟨x , y⟩ | ⟨y , x⟩ ∈ RI}
F : Functional role, I |= fun(f) iff ∀z∀y∀z if ⟨x , y⟩ ∈ fI and ⟨x , z⟩ ∈ fI

the y = z

R+: transitive role,
(R+)

I = {⟨x , y⟩ | ∃z such that ⟨x , z⟩ ∈ RI ∧ ⟨z, y⟩ ∈ RI}

Basics on Concrete Domains

▶ Concrete domains: reals, integers, strings, . . .
(tim, 14):hasAge
(sf , “SoftComputing”):hasAcronym
(source1, “ComputerScience”):isAbout
(service2, “InformationRetrievalTool ′′):Matches
Minor = Person ⊓ ∃hasAge. ≤18

▶ Semantics: a clean separation between “object” classes and concrete
domains

▶ D = ⟨∆D,ΦD⟩
▶ ∆D is an interpretation domain
▶ ΦD is the set of concrete domain predicates d with a

predefined arity n and fixed interpretation dD ⊆ ∆n
D

▶ Concrete properties: RI ⊆ ∆I ×∆D

▶ Notation: (D). E.g., ALC(D) is ALC + concrete domains

▶ Example: assume I = (∆I , ·I) such that

∆I = {a, b, c, d, e, f , 1, 2, 4, 5, 8}

PersonI = {a, b, c, d}

▶ Consider the following concrete domain with of some unary predicates (n = 1) over reals
▶ ∆D = R,
▶ ΦD = {=m,≥m,≤m, >m, <m| m ∈ R}
▶ the fixed interpretation of the predicates is

(=m)D = {m}
(≥m)D = {k | k ≥ m}
(≤m)D = {k | k ≤ m}

(>m)D = {k | k > m}
(<m)D = {k | k < m}

▶ Concrete properties: hasAgeI ⊆ ∆I × R

hasAgeI = {⟨a, 9⟩, ⟨c, 20⟩, ⟨b, 12⟩}

▶ What is the interpretation of Person ⊓ ∃hasAge. ≤18 ?

(Person ⊓ ∃hasAge. ≤18)
I

= PersonI ∩ {x | ∃y ∈ R such that ⟨x, y⟩ ∈ hasAgeI ∧ y ∈ (≤18)
I

= {a, b, c, d} ∩ {x | ∃y.⟨x, y⟩ ∈ {⟨a, 9⟩, ⟨c, 20⟩, ⟨b, 12⟩} ∧ y ≤ 18}
= {a, b, c, d} ∩ {a, b}
= {a, b}

DL Knowledge Base

▶ A DL Knowledge Base is a pair K = ⟨T ,A⟩, where
▶ T is a TBox

▶ containing general inclusion axioms of the form C ⊑ D,
▶ concept definitions of the form A = C
▶ primitive concept definitions of the form A ⊑ C
▶ role inclusions of the form R ⊑ P
▶ role equivalence of the form R = P

▶ A is a ABox
▶ containing assertions of the form a:C
▶ containing assertions of the form (a, b):R

▶ An interpretation I is a model of K, written I |= K iff I |= T and I |= A,
where

▶ I |= T (I is a model of T) iff I is a model of each element in T
▶ I |= A (I is a model of A) iff I is a model of each element in A

Syntax and semantics of the DL SROIQ(D) (OWL 2)

Concepts Syntax (C) FOL Reading of C(x)
(C1) A A(x)
(C2) ⊤ 1
(C3) ⊥ 0
(C4) C ⊓ D C(x) ∧ D(x)
(C5) C ⊔ D C(x) ∨ D(x)
(C6) ¬C ¬C(x)
(C7) ∀R.C ∀y.R(x, y)→ C(y)
(C8) ∃R.C ∃y.R(x, y) ∧ C(y)
(C9) ∀T .d ∀v.T (x, v)→ d(v)
(C10) ∃T .d ∃v.T (x, v) ∧ d(v)
(C11) {a} x = a
(C12) (≥ m S.C) ∃y1 . . . ∃ym.

∧m
i=1(S(x, yi) ∧ C(yi)) ∧

∧
1≤j<k≤m yj ̸= yk

(C13) (≤ m S.C) ∀y1 . . . ∀ym+1.
∧m

i=1(S(x, yi) ∧ C(yi))→
∨

1≤j<k≤m yj = yk
(C14) (≥ m T .d) ∃v1 . . . ∃vm.

∧m
i=1(T (x, vi) ∧ d(vi)) ∧

∧
1≤j<k≤m vj ̸= vk

(C15) (≤ m T .d) ∀v1 . . . ∀vm+1.
∧m

i=1(T (x, vi) ∧ d(vi))→
∨

1≤j<k≤m vj = vk
(C16) ∃S.Self S(x, x)
Roles Syntax (R) Semantics of R(x, y)
(R1) R R(x, y)
(R2) R− R(y, x)
(R3) U 1

Axiom Syntax (E) Semantics (I satisfies E if . . .)
(A1) a:C C(a)
(A2) (a, b):R R(a, b)
(A3) (a, b):¬R ¬R(a, b)
(A4) (a, v):T T (a, v)
(A5) (a, v):¬T ¬T (a, v)
(A6) C ⊑ D ∀x.C(x)→ D(x)
(A7) R1 . . .Rn ⊑ R ∀x1∀xn+1∃x2 . . .

∃xn.(R1(x1, x2) ∧ . . . ∧ Rn(xn, xn+1))→ R(x1, xn+1)
(A8) T1 ⊑ T2 ∀x∀v.T1(x, v)→ T2(x, v)
(A9) trans(R) ∀x∀y∀z.R(x, z) ∧ R(z, y)→ R(x, y)
(A10) disj(S1, S2) ∀x∀y.S1(x, y) ∧ S2(x, y) = 0
(A11) disj(T1, T2) ∀x∀v.T1(x, v) ∧ T2(x, v) = 0
(A12) ref(R) ∀x.R(x, x)
(A13) irr(S) ∀x.¬S(x, x)
(A14) sym(R) ∀x∀y.R(x, y) = R(y, x)
(A15) asy(S) ∀x∀y , S(x, y)→ ¬S(y, x)

OWL 2 as Description Logic (excerpt)

Concept/Class constructors:

Abstract Syntax DL Syntax Example
Descriptions (C)
A (URI reference) A Conference
owl:Thing ⊤
owl:Nothing ⊥
intersectionOf(C1 C2 . . .) C1 ⊓ C2 Reference ⊓ Journal
unionOf(C1 C2 . . .) C1 ⊔ C2 Organization ⊔ Institution
complementOf(C) ¬C ¬ MasterThesis
oneOf(o1 . . .) {o1, . . .} {"WISE","ISWC",...}
restriction(R someValuesFrom(C)) ∃R.C ∃parts.InCollection
restriction(R allValuesFrom(C)) ∀R.C ∀date.Date
restriction(R hasValue(o)) ∃R.{o} ∃date.{2005}
restriction(R minCardinality(n)) (≥ n R) (⩾ 1 location)
restriction(R maxCardinality(n)) (≤ n R) (⩽ 1 publisher)
restriction(U someValuesFrom(D)) ∃U.D ∃issue.integer
restriction(U allValuesFrom(D)) ∀U.D ∀name.string
restriction(U hasValue(v)) ∃U. =v} ∃series.=”LNCS”
restriction(U minCardinality(n)) (≥ n U) (⩾ 1 title)
restriction(U maxCardinality(n)) (≤ n U) (⩽ 1 author)

Note: R is an abstract role, while U is a concrete property of
arity two.

Axioms:
Abstract Syntax DL Syntax Example

Axioms

Class(A partial C1 . . . Cn) A ⊑ C1 ⊓ . . . ⊓ Cn Human ⊑ Animal ⊓ Biped
Class(A complete C1 . . .Cn) A = C1 ⊓ . . . ⊓ Cn Man = Human ⊓ Male
EnumeratedClass(A o1 . . . on) A = {o1} ⊔ . . . ⊔ {on} RGB = {r} ⊔ {g} ⊔ {b}
SubClassOf(C1C2) C1 ⊑ C2
EquivalentClasses(C1 . . .Cn) C1 = . . . = Cn
DisjointClasses(C1 . . .Cn) Ci ⊓ Cj =⊥, i ̸= j Male ⊓ Female ⊑⊥
ObjectProperty(R super (R1) . . . super (Rn) R ⊑ Ri HasDaughter ⊑ hasChild

domain(C1) . . .domain(Cn) (≥ 1 R) ⊑ Ci (≥ 1 hasChild) ⊑ Human
range(C1) . . .range(Cn) ⊤ ⊑ ∀R.Ci ⊤ ⊑ ∀hasChild.Human
[inverseof(P)] R = P− hasChild = hasParent−

[symmetric] R ⊑ R− similar = similar−

[functional] ⊤ ⊑ (≤ 1 R) ⊤ ⊑ (≤ 1 hasMother)
[Inversefunctional] ⊤ ⊑ (≤ 1 R−)
[Transitive]) Tr(R) Tr(ancestor)

SubPropertyOf(R1R2) R1 ⊑ R2
EquivalentProperties(R1 . . .Rn) R1 = . . . = Rn cost = price
AnnotationProperty(S)

Abstract Syntax DL Syntax Example
DatatypeProperty(U super (U1) . . . super (Un) U ⊑ Ui

domain(C1) . . .domain(Cn) (≥ 1 U) ⊑ Ci (≥ 1 hasAge) ⊑ Human
range(D1) . . .range(Dn) ⊤ ⊑ ∀U.Di ⊤ ⊑ ∀hasAge.posInteger
[functional]) ⊤ ⊑ (≤ 1 U) ⊤ ⊑ (≤ 1 hasAge)

SubPropertyOf(U1U2) U1 ⊑ U2 hasName ⊑ hasFirstName
EquivalentProperties(U1 . . .Un) U1 = . . . = Un

Individuals

Individual(o type (C1) . . . type (Cn)) o:Ci tim:Human
value(R1o1) . . .value(Rnon) (o, oi):Ri (tim,mary):hasChild
value(U1v1) . . .value(Unvn) (o, v1):Ui (tim, 14):hasAge

SameIndividual(o1 . . . on) o1 = . . . = on president_Bush = G.W .Bush
DifferentIndividuals(o1 . . . on) oi ̸= oj , i ̸= j john ̸= peter

Symbols

Object Property R (URI reference) R hasChild
Datatype Property U (URI reference) U hasAge
Individual o (URI reference) U tim
Data Value v (RDF literal) U “International Conference on Semantic Web”

Basic Inference Problems (Formally)

Consistency: Check if knowledge is meaningful
▶ Is K satisfiability? 7→ Is there some model I of K ?
▶ Is C satisfiability? 7→ CI ̸= ∅ for some some model I of
K ?

Subsumption: structure knowledge, compute taxonomy
▶ K |= C ⊑ D ? 7→ Is it true that CI ⊆ DI for all models I

of K ?

Equivalence: check if two classes denote same set of instances
▶ K |= C = D ? 7→ Is it true that CI = DI for all models I

of K ?

Instantiation: check if individual a instance of class C
▶ K |= a:C ? 7→ Is it true that aI ∈ CI for all models I of
K ?

Retrieval: retrieve set of individuals that are instances of calss C
▶ Compute the set {a | K |= a:C}

Reduction to Satisfiability

Problems are all reducible to KB satisfiability
Subsumption: K |= C ⊑ D iff ⟨T ,A ∪ {a:C ⊓ ¬D}⟩ not

satisfiable, where a is a new individual
Equivalence: K |= C = D iff K |= C ⊑ D and K |= D ⊑ C
Instantiation: K |= a:C iff ⟨T ,A ∪ {a:¬C}⟩ not satisfiable

Retrieval: The computation of the set {a | K |= a:C} is
reducible to the instance checking problem

Non-standard Inferences

There are also some non-standard inferences.
Most Specific Concept: Given KB = ⟨T ,A⟩ and individuals

a1, . . . ,an, create a most specific concept
C = msc(KB,a1, . . . ,an) such that KB |= ai :C

Least Common Subsumer: Given KB = ⟨T ,A⟩ and concepts
C1, . . . ,Cn, create a most specific concept
C = lcs(KB,C1, . . . ,Cn) such that KB |= Ci ⊑ C

Note:

msc(KB,a1, . . . ,an) = lcs(KB,msc(KB,a1), . . . ,msc(KB,an))

lcs(KB,C1, . . . ,Cn) = lcs(KB, lcs(KB, lcs(KB,C1,C2),C3), . . . ,) . . .)

Reasoning in DLs

▶ OWL 2: tableaux based algorithms
▶ OWL 2 EL: structural based algorithm
▶ OWL 2 QL: query rewriting based algorithm
▶ OWL 2 RL: mapping to Datalog

OWL QL
▶ OWL 2 QL is related to the DL− Lite DL family [Artale et al., 2009]

▶ DL− Litecore , the core language for the whole family (A atomic concept, P atomic role, and P− is its
inverse):

B −→ A | ∃R
C −→ B | ¬B

R −→ P | P−

E −→ R | ¬R .

▶ Inclusion axioms that are of the form B ⊑ C
▶ DL− LiteR from DL− Litecore allowing R ⊑ E
▶ DL− Lite⊓ is obtained from DL− Litecore allowing B1 ⊓ . . . ⊓ Bn ⊑ C
▶ DL− LiteF is obtained by extending DL− Litecore with global functional roles

DL-Lite

DLR-Lite

DL-Lite DL-Lite

DLR-Lite

DLR-Lite

core

core

Figure: Excerpt of the DL-Lite family.

▶ OWL 2 RL is related to the Horn-DL family [Grosof et al., 2003, ter Horst, 2005] (A atomic concept,
m ∈ {0, 1}, l is a value of the concrete domain, R is an object property, a individual, T is a datatype
property):

B −→ A | {a} | B1 ⊓ B2 | B1 ⊔ B2 | ∃R.B | ∃T .d
C −→ A | C1 ⊓ C2 | ¬B | ∀R.C | ∃R.{a} | ∀T .d |

(≤ m R.B) | (≤ m R) | (≤ m T .d)
D −→ ∃R.{a} | ∃T . =l | D1 ⊓ D2
R −→ P | P−

▶ Inclusion axioms have the form
B ⊑ C
A = D

R1 ⊑ R2
R1 = R2

▶ There are others, such as disj(B1, B2), dom(R,C), ran(R,C), dom(T ,C), fun(R), irr(R),
sym(R), asy(R), trans(()R), disj(R1,R2)

OWL QL and OWL RL can be mapped into Datalog
Excerpt:

σ(a:A) 7→ A(a).

σ((a, b):R) 7→ R(a, b).

σ(R1 ⊑ R2) 7→ σrole(R2, x , y)← σrole(R1, x , y)

σ(B ⊑ C) 7→ σh(C, x)← σb(B, x)

σh(∀R.C, x) 7→ σh(C, x)← σrole(R, x , y)

σb(B1 ⊓ B2, x) 7→ σb(B1, x), σb(B2, x)

σb(∃R.B, x) 7→ σrole(R, x , y), σb(B, y)

σh(A, x) 7→ A(x)

σb(A, x) 7→ A(x)

σrole(R, x , y) 7→ R(x , y)

σrole(R−, x , y) 7→ R(y , x)

where x , y new variables

The case of tableau algorithms

▶ Tableaux algorithm deciding satisfiability
▶ Try to build a tree-like model I of the KB
▶ Decompose concepts C syntactically

▶ Apply tableau expansion rules
▶ Infer constraints on elements of model

▶ Tableau rules correspond to constructors in logic (⊓,⊔, . . .)

▶ Some rules are nondeterministic (e.g., ⊔,≤)
▶ In practice, this means search

▶ Stop when no more rules applicable or clash occurs
▶ Clash is an obvious contradiction, e.g., A(x),¬A(x)

▶ Cycle check (blocking) may be needed for termination

Negation Normal Form (NNF)

▶ We have to transform concepts into Negation Normal
Form: push negation inside using de Morgan’ laws

¬⊤ 7→ ⊥
¬ ⊥ 7→ ⊤
¬¬C 7→ C

¬(C1 ⊓ C2) 7→ ¬C1 ⊔ ¬C2
¬(C1 ⊔ C2) 7→ ¬C1 ⊓ ¬C2

and
¬(∃R.C) 7→ ∀R.¬C
¬(∀R.C) 7→ ∃R.¬C

Completion-Forest
▶ This is a forest of trees, where

▶ each node x is labelled with a set L(x) of concepts
▶ each edge ⟨x , y⟩ is labelled with L(⟨x , y⟩) = {R} for some role R (edges

correspond to relationships between pairs of individuals)

▶ The forest is initialised with
▶ a root node a, labelled L(x) = ∅ for each individual a occurring in the KB
▶ an edge ⟨a, b⟩ labelled L(⟨a, b⟩) = {R} for each (a, b):R occurring in the

KB
▶ Then, for each a:C occurring in the KB, set L(a)→ L(a) ∪ {C}
▶ The algorithm expands the tree either by extending L(x) for some node x or by

adding new leaf nodes.
▶ Edges are added when expanding ∃R.C
▶ A completion-forest contains a clash if, for a node x , {C,¬C} ⊆ L(x)
▶ If nodes x and y are connected by an edge⟨x , y⟩, then y is called a successor of

x and x is called a predecessor of y . Ancestor is the transitive closure of
predecessor.

▶ A node y is called an R-successor of a node x if y is a successor of x and
L(⟨x , y⟩) = {R}.

▶ The algorithm returns “satisfiable" if rules can be applied s.t. they yield a
clash-free, complete (no more rules can be applied) completion forest

ALC Tableau rules without GCI’s

Rule Description
(⊓) if 1. C1 ⊓ C2 ∈ L(x) and

2. {C1,C2} ̸⊆ L(x)
then L(x)→ L(x) ∪ {C1,C2}

(⊔) if 1. C1 ⊔ C2 ∈ L(x) and
2. {C1,C2} ∩ L(x) = ∅

then L(x)→ L(x) ∪ {C} for some C ∈ {C1,C2}

(∃) if 1. ∃R.C ∈ L(x) and
2. x has no R-successor y with C ∈ L(y)

then create a new node y with L(⟨x , y⟩) = {R} and L(y) = {C}

(∀) if 1. ∀R.C ∈ L(x) and
2. x has an R-successor y with C ̸∈ L(y)

then L(y)→ L(y) ∪ {C}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C,¬C ⊔ ¬D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C,¬C ⊔ ¬D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C,¬C ⊔ ¬D,¬C}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C,¬C ⊔ ¬D,¬C}

Clash

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C,¬C ⊔ ¬D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C,¬C ⊔ ¬D,¬D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C,¬C ⊔ ¬D,¬D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C,¬C ⊔ ¬D,¬D}
R

y2

L(y2) = {D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C,¬C ⊔ ¬D,¬D}
R

y2

L(y2) = {D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C,¬C ⊔ ¬D,¬D}
R

y2

L(y2) = {D,¬C ⊔ ¬D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C,¬C ⊔ ¬D,¬D}
R

y2

L(y2) = {D,¬C ⊔ ¬D}

Example

Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C,∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C,¬C ⊔ ¬D,¬D}
R

y2

L(y2) = {D,¬C ⊔ ¬D,¬C}

Example
Is ∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C, ∀R.(¬C ⊔ ¬D), ∃R.D}

R

y1

L(y1) = {C,¬C ⊔ ¬D,¬D}

R

y2

L(y2) = {D,¬C ⊔ ¬D,¬C}

▶ Finished. No more rules applicable and the tableau is complete and clash-free
▶ Hence, the concept is satisfiable

▶ The tree corresponds to a model I = (∆I , ·I)

▶ The nodes are the elements of the domain: ∆I = {x, y1, y2}
▶ For each atomic concept A, set AI = {z | A ∈ L(z)}

▶ CI = {y1}, DI = {y2}

▶ For each role R, set RI = {⟨x, y⟩ | there is an edge labeled R from x to y}

▶ RI = {⟨x, y1⟩, ⟨x, y2⟩}

▶ It can be shown that x ∈ (∃R.C ⊓ ∀R.(¬C ⊔ ¬D) ⊓ ∃R.D)I ̸= ∅

Example

Is ∃R.C ⊓ ∀R.¬C satisfiable? No.

x

L(x) = {∃R.C ⊓ ∀R.¬C}

Example

Is ∃R.C ⊓ ∀R.¬C satisfiable? No.

x

L(x) = {∃R.C ⊓ ∀R.¬C}

Example

Is ∃R.C ⊓ ∀R.¬C satisfiable? No.

x

L(x) = {∃R.C ⊓ ∀R.¬C}

Example

Is ∃R.C ⊓ ∀R.¬C satisfiable? No.

x

L(x) = {∃R.C,∀R.¬C}

Example

Is csomeR.C ⊓ ∀R.¬C satisfiable? No.

x

L(x) = {∃R.C,∀R.¬C}

Example

Is ∃R.C ⊓ ∀R.¬C satisfiable? No.

x

L(x) = {∃R.C,∀R.¬C}

R

y1

L(y1) = {C}

Example

Is ∃R.C ⊓ ∀R.¬C satisfiable? No.

x

L(x) = {∃R.C,∀R.¬C}

R

y1

L(y1) = {C}

Example

Is ∃R.C ⊓ ∀R.¬C satisfiable? No.

x

L(x) = {∃R.C,∀R.¬C}

R

y1

L(y1) = {C,¬C}

Example

Is ∃R.C ⊓ ∀R.¬C satisfiable? No.

x

L(x) = {∃R.C, ∀R.¬C}

R

y1

L(y1) = {C,¬C}

Clash
▶ Finished. No more rules applicable and the tableau is complete, but not clash-free
▶ Hence, the concept is not satisfiable

▶ I.e. no model can be built, e.g.
▶ ∆I = {x, y1}
▶ CI = {y1}
▶ RI = {⟨x, y1⟩}
▶ is not a model because

(∃R.C ⊓ ∀R.¬C)I = (∃R.C)I ∩ (∀R.¬C)I = {x} ∩ ∅ = ∅

Soundness and Completeness

Theorem
Let A be an ALC ABox and F a completion-forest obtained by
applying the tableau rules to A. Then

1. The rule application terminates;
2. If F is clash-free and complete, then F defines a

(canonical) (tree) model for A; and
3. If A has a model I, then the rules can be applied such that

they yield a clash-free and complete completion-forest.

KBs with GCIs

▶ We have seen how to test the satisfiability of an ABox A
▶ But, how can we check if a KB KB = ⟨T ,A⟩ is satisfiable with T ̸= ∅?

▶ Basic idea: since C ⊑ D is equivalent to ⊤ ⊑ nnf (¬C ⊔ D)),
▶ replace each C ⊑ D with its equivalent form ⊤ ⊑ nnf (¬C ⊔ D)

▶ use the rule: for each ⊤ ⊑ E ∈ T , add E to every node

▶ But, termination is not guaranteed
▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human}

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human,¬Human}

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human,¬Human}
Clash

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human}

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y1
L(y1) = {Human,¬Human ⊔ ∃hasMother.Human}

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y1
L(y1) = {Human,¬Human ⊔ ∃hasMother.Human}

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y1
L(y1) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y1
L(y1) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y2L(y2) = {Human,¬Human ⊔ ∃hasMother.Human}

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y1
L(y1) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y2L(y2) = {Human,¬Human ⊔ ∃hasMother.Human}

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y1
L(y1) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y2L(y2) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y1
L(y1) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y2L(y2) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

▶ E.g., consider KB = ⟨T ,A⟩

T = {Human ⊑ ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y1
L(y1) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y2L(y2) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}
.
.
.

Node Blocking in ALC

▶ When creating new node, check ancestors for equal label set
▶ If such a node is found, new node is blocked
▶ No rule is applied to blocked nodes

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y1
L(y1) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y2L(y2) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human} blocked: L(y1) = L(y2)

Node Blocking in ALC

▶ When creating new node, check ancestors for equal label set
▶ If such a node is found, new node is blocked
▶ No rule is applied to blocked nodes

umbertoL(umberto) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y1
L(y1) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human}

hasMother

y2L(y2) = {Human,¬Human ⊔ ∃hasMother.Human, ∃hasMother.Human} blocked: L(y1) = L(y2)

hasMother

▶ Block represents cyclical model
▶ ∆I = {umberto, y1, y2}
▶ HumanI = {umberto, y1, y2}
▶ hasMotherI = {⟨umberto, y1⟩, ⟨y1, y2⟩, ⟨y2, y1⟩}

Blocking in ALC

▶ A non-root node x is blocked if for some ancestor y , y is
blocked or L(x) = L(y), where y is not a root node.

▶ A blocked node x is indirectly blocked if its predecessor is
blocked, otherwise it is directly blocked.

▶ If x is directly blocked, it has a unique ancestor y such that
L(x) = L(y)

▶ if there existed another ancestor z such that L(x) = L(z)
then either y or z must be blocked.

▶ If x is directly blocked and y is the unique ancestor such
that L(x) = L(y), we will say that y blocks x

ALC Tableau rules with GCI’s

Rule Description
(⊓) if 1. C1 ⊓ C2 ∈ L(x), x is not indirectly blocked and

2. {C1,C2} ̸⊆ L(x)
then L(x)→ L(x) ∪ {C1,C2}

(⊔) if 1. C1 ⊔ C2 ∈ L(x), x is not indirectly blocked and
2. {C1,C2} ∩ L(x) = ∅

then L(x)→ L(x) ∪ {C} for some C ∈ {C1,C2}

(∃) if 1. ∃R.C ∈ L(x), x is not blocked and
2. x has no R-successor y with C ∈ L(y)

then create a new node y with L(⟨x , y⟩) = {R} and L(y) = {C}

(∀) if 1. ∀R.C ∈ L(x), x is not indirectly blocked and
2. x has an R-successor y with C ̸∈ L(y)

then L(y)→ L(y) ∪ {C}
(⊑) if 1. ⊤ ⊑ E ∈ T , x is not indirectly blocked and

2. E ̸∈ L(x) = ∅
then L(x)→ L(x) ∪ {E}

Soundness and Completeness

Theorem
Let KB be an ALC KB and F a completion-forest obtained by
applying the tableau rules to KB. Then

1. The rule application terminates;
2. If F is clash-free and complete, then F defines a

(canonical) (tree) model for KB; and
3. If KB has a model I, then the rules can be applied such

that they yield a clash-free and complete completion-forest.

The case of Logic Programs (LPs)

LPs Basics, for ease, Datalog
▶ Predicates are n-ary
▶ Terms are variables or constants
▶ Facts ground atoms

For instance,
has_parent(mary , jo)

▶ Rules are of the form
P(x)← φ(x, y)

where
▶ φ(x, y) is a formula built from atoms of the form B(z) and connectors
∧,∨, 0, 1

▶ zi is a tuple of literals, or variables in x, y
▶ For instance,

has_father(x , y) ← has_parent(x , y) ∧Male(y)

Remark
Note that

has_father(x , y) ← has_parent(x , y),Male(y)

is the same as repplacing “,” with ∧

▶ Extensional database (EDB): set of facts
▶ Intentional database (IDB): set of rules
▶ Logic Program P:

▶ P = EDB ∪ IDB
▶ No predicate symbol in EDB occurs in the head of a rule in

IDB
▶ The principle is that we do not allow that IDB may redefine

the extension of predicates in EDB

▶ EDB is usually, stored into a relational database

LPs Semantics: FOL semantics

▶ P∗ is constructed as follows:
1. set P∗ to the set of all ground instantiations of rules in P
2. replace a fact p(c) in P∗ with the rule p(c)← 1
3. if atom A is not head of any rule in P∗, then add A← 0 to P∗
4. replace several rules in P∗ having same head

A← φ1
A← φ2

...
A← φn

 with A← φ1 ∨ φ2 ∨ . . . ∨ φn

▶ Note: in P∗ each atom A ∈ BP is head of exactly one rule
▶ Herbrand Base of P is the set BP of ground atoms
▶ Interpretation is a function I : BP → {0, 1}
▶ Model I |= P iff for all r ∈ P∗ I |= r , where I |= A← φ iff I(φ) ≤ I(A)

▶ Entailment: for a ground atom p(c)

P |= p(c) iff all models of P satisfy p(c)

▶ Least model MP of P exists and is least fixed-point of

TP(I)(A) = I(φ), for all A← φ ∈ P∗

▶ M can be computed as the limit of

I0 = 0
Ii+1 = TP(Ii) .

Example

P =

Q(x) ← B(x)
Q(x) ← C(x)
B(a)
C(b)

P∗ =

Q(a) ← B(a) ∨ C(a)
Q(b) ← B(b) ∨ C(b)
B(a) ← 1
C(b) ← 1

Ii Q(a) Q(b) B(a) B(b) C(a) C(b)
I0 0 0 0 0 0 0
I1 0 0 1 0 0 1
I2 1 1 1 0 0 1
I3 1 1 1 0 0 1

▶ I2 = I3, i.e.TP (I2) = I3 = I2
▶ I2 is least fixed-point and, thus, minimal model MP = {Q(a),Q(b),B(a),C(b)}

LP Query Answering

Proposition
P |= p(t1, ..., tn) iff MP |= p(t1, ..., tn).

▶ As a consequence, we may restrict our attention to minimal
models only

▶ Query: is a rule of the form

q(x)← φ(x,y)

▶ If P |= q(c) then c is called an answer to q
▶ The answer set of q w.r.t. P is defined as

ans(P,q) = {c | P |= q(c)}

Toy Example

Q(x) ← B(x)
Q(x) ← C(x)
B(a)
C(b)

P |= Q(a) P |= Q(b) ans(P,Q) = {a,b}

A general top-down query procedure for ground LPs

▶ Idea: use theory of fixed-point computation of equational systems over {0, 1}
▶ Assign a variable xi to an atom Ai ∈ BP
▶ Map a rule A← f (A1, . . . ,An) ∈ P∗ into the equation xA = f (xA1 , . . . , xAn)

p ← (q ∨ r) ∧ t is mapped into xp = min(max(xq , xr), xt)

▶ A LP P is thus mapped into the equational system, using P∗
x1 = f1(x11 , . . . , x1a1

)

...
xn = fn(xn1 , . . . , xnan)

▶ fi is monotone and, thus, the system has least fixed-point, which is the limit of

y0 = 0
yi+1 = f(yi) .

where f = ⟨f1, . . . , fn⟩ and f(x) = ⟨f1(x1), . . . , fn(xn)⟩
▶ The least-fixed point is the least model of P

Example

P =

Q(x) ← B(x)
Q(x) ← C(x)
B(a)
C(b)

P∗ =

Q(a) ← B(a) ∨ C(a)
Q(b) ← B(b) ∨ C(b)
B(a) ← 1
C(b) ← 1

xQ(a) = max(xB(a), xC(a))
xQ(b) = max(xB(b), xC(b))
xB(a) = 1
xC(b) = 1

yi xQ(a) xQ(b) xB(a) xB(b) xC(a) xC(b)
y0 0 0 0 0 0 0
y1 0 0 1 0 0 1
y2 1 1 1 0 0 1
y3 1 1 1 0 0 1

▶ y2 = y3, i.e.f(y2) = y3 = y2

▶ y2 is least fixed-point and, thus, minimal model

▶ A simple query answering procedure to determine
ans(P,q(x)):

1. Convert P into P∗

2. Compute the minimal model MP of P∗, i.e. of P
3. Store the minimal model MP of P∗ in a database
4. Translate q(x) into a SQL statement
5. Execute the SQL query over the relational database

▶ Problem: MP may be huge (exponential in the size of P∗)
▶ Possible solution: top-down query answering procedure
▶ First step: a top-down query answering procedure for

ground queries
▶ Given q(c), check if P |= q(c) by computing just a fragment

of MP sufficient to answer the question
▶ A top-down procedure exists for equational systems
▶ Therefore, it works for LPs too

Procedure Solve(S,Q)
Input: monotonic system S = ⟨L,V , f⟩, where Q ⊆ V is the set of query variables;
Output: A set B ⊆ V , with Q ⊆ B such that the mapping v equals lfp(f) on B.

1. A : = Q, dg : = Q, in : = ∅, for all x ∈ V do v(x) = 0, exp(x) = 0
2. while A ̸= ∅ do
3. select xi ∈ A, A : = A \ {xi}, dg : = dg ∪ s(xi)
4. r : = fi (v(xi1), ..., v(xiai

))

5. if r ≻ v(xi) then v(xi) : = r , A : = A ∪ (p(xi) ∩ dg) fi
6. if not exp(xi) then exp(xi) = 1, A : = A ∪ (s(xi) \ in), in : = in ∪ s(xi) fi
7. remove x from A if v(x) = ⊤

od

L is complete lattice. For q(x)← ϕ ∈ P, with s(q) we denote the set of sons
of q w.r.t. r , i.e. the set of intentional predicate symbols occurring in ϕ. With
p(q) we denote the set of parents of q, i.e. the set p(q) = {pi : q ∈ s(pi , r)}
(the set of predicate symbols directly depending on q).

Example

P∗ =

a ← b ∧ c
c ← a ∨ d
b ← 1
d ← 1

xa = min(xb, xc)
xc = max(xa, xd)
xb = 1
xd = 1

P∗ |= a ?

1. A = {xa}, xi = xa, A = ∅, dg = {xa, xb, xc}, r = 0, A = {xb, xc}, exp(xa) = 1, in = {xb, xc}

2. xi = xb, A = {xc}, r = 1, v(xb) = 1, A = {xc , xa}, exp(xb) = 1

3. xi = xc , A = {xa}, dg = {xa, xb, xc , xd}, r = 0, exp(xc) = 1, A = {xa, xd}, in = {xa, xb, xc , xd}

4. xi = xd , A = {xa}, r = 1, v(xd) = 1, exp(xd) = 1, A = {xa, xc}

5. xi = xc , A = {xa}, r = 1, v(xc) = 1

6. xi = xa, A = ∅, r = 1, v(xa) = 1

7. stop. return v (in particular, v(xa) = 1)

▶ The fact that only a part of the model is computed
becomes evident
▶ the computation does not change if we add any program P ′

to P not containing atoms of P
▶ a bottom-up computation will consider P ′ as well

▶ Problem: we answer ground queries q(c) only
▶ There are too many c on which to test q(c)

▶ Solution: generalize Solve(S,Q) to compute ALL answers
in one run only
▶ Idea: the procedure is as for Solve(S,Q), but we compute

answers incrementally

Computing All Answers
▶ A query is an atom Q (query atom) of the form q(x)
▶ For a given n-ary predicate p and a set of answers ∆p of p, for convenience we represent ∆p as an n-ary

table tab∆p , containing the records of the form ⟨c1, . . . , cn⟩

▶ If ∆1
p and ∆2

p are two sets of answers for p, we write ∆1
p ⪯ ∆2

p iff ∆1
p ⊂ ∆2

p

▶ Our algorithm is an improved top-down query answering algorithm based on Semi Naive Evaluation for

Datalog
1. start by assuming all IDB (Intentional Database) relations empty;
2. repeatedly evaluate the rules using the EDB (Extensional Database) and the previous IDB, to get a

new IDB;

3. end when no change to IDB.
▶ Consider a rule p(x)← φ(x, y) with predicates p1, . . . , pk in rule body φ(x, y)
▶ Consider interpretation I

I(pi (c)) =

{
1, if c ∈ ∆pi
0, otherwise.

▶ Assume
eval(p,∆p1 , . . . ,∆pk) = {c | 1 = max

c′
I(φ(c, c′))} ,

where c′ is a tuple of constants occurring in
⋃

i ∆pi

▶ eval can be implemented using SQL queries over relational tables tab∆p1
, . . . , tab∆pk

▶ E.g.,

path(x, y) ← edge(x, y) ∨ (path(x, z) ∧ edge(z, y))

▶ eval(path,∆edge,∆path) is

π1,2(tab∆edge
) ∪ π1,4(tab∆edge

▷◁2=3 tab∆path
) . (1)

Procedure Answer(L,K,Q)
Input: Truth space L = {0, 1}, knowledge baseK, set Q of query predicate symbols
Output: A mapping v such that it contains all answers of predicates in Q.

1. A := Q, dg := Q, in := ∅, for all predicate symbols p in P do v(p) = ∅, exp(p) = false
2. while A ̸= ∅ do
3. select pi ∈ A, A := A \ {pi}, dg := dg ∪ s(pi)
4. if (pi extensional predicate) ∧ (v(pi) = ∅) then v(pi) := tabpi
5. if (pi intentional predicate) then ∆pi := eval(pi , v(pi1

), ..., v(piki
))

6. if ∆pi ≻ v(pi) then v(pi) := ∆pi , A := A ∪ (p(pi) ∩ dg) fi
7. if not exp(pi) then exp(pi) = true, A := A ∪ (s(pi) \ in), in := in ∪ s(pi) fi

od

▶ for predicate symbol pi , s(pi) is the set of predicate symbols occurring in the rule body of pi , i.e. the sons of
pi ;

▶ for predicate symbol pi , p(pi) = {pj : pi ∈ s(pj)}, i.e. the parents of pi ;

▶ in step 5, pi1
, . . . , piki

are all predicate symbols occurring in the rule body of pi , i.e. the sons

s(pi) = {pi1
, . . . , piki

} of pi .

Path Example

path(x, y)← edge(x, y) ∨ (path(x, z) ∧ edge(z, y))

tabedge
c b
a c
b a
a b

1. A := {path}, pi := path, A := ∅, dg := {path, edge},∆path := ∅
exp(path) := 1, A := {path, edge}, in := {path, edge}

2. pi := path, A := {edge},∆path := ∅
3. pi := edge, A := ∅,∆edge ≻ v(edge), v(edge) := ∆edge, A := {path}, exp(edge) := 1
4. pi := path, A := ∅,∆path ≻ v(path), v(path) := ∆path, A := {path}
5. pi := path, A := ∅,∆path ≻ v(path), v(path) := ∆path, A := {path}
6. pi := path, A := ∅,∆path ≻ v(path), v(path) := ∆path, A := {path}
7. pi := path, A := ∅,∆path = v(path)
8. stop. return v(path)

Iteri ∆pi v(pi)

0. − v(edge) = v(path) = ∅
1. ∆path = ∅ −
2. ∆path = ∅ −
3. ∆edge = {⟨a, b⟩, ⟨b, a⟩, ⟨a, c⟩, ⟨c, b⟩} v(edge) = ∆edge
4. ∆path = {⟨a, b⟩, ⟨b, a⟩, ⟨a, c⟩, ⟨c, b⟩} v(path) = ∆path
5. ∆path = {⟨a, a⟩, ⟨a, b⟩, ⟨a, c⟩, ⟨b, a⟩, ⟨b, b⟩, ⟨b, c⟩, ⟨c, a⟩, ⟨c, b⟩} v(path) = ∆path
6. ∆path = {⟨a, a⟩, ⟨a, b⟩, ⟨a, c⟩, ⟨b, a⟩, ⟨b, b⟩, ⟨b, c⟩, ⟨c, a⟩, ⟨c, b⟩, ⟨c, c⟩} v(path) = ∆path
7. ∆path = {⟨a, a⟩, ⟨a, b⟩, ⟨a, c⟩, ⟨b, a⟩, ⟨b, b⟩, ⟨b, c⟩, ⟨c, a⟩, ⟨c, b⟩, ⟨c, c⟩} −

Uncertainty and Fuzzyness in Logics

Uncertainty vs. Vagueness: a clarification

Uncertainty vs Vagueness: a clarification

▶ Initial difficulty:
▶ Understand the conceptual differences between uncertainty

and vagueness
▶ Main problem:

▶ Interpreting a degree as a measure of uncertainty rather
than as a measure of vagueness

Uncertain Statements

▶ A statement is true or false in any world/interpretation
▶ We are “uncertain” about which world to consider
▶ We may have e.g. a probability or possibility distribution

over possible worlds
▶ E.g., “it will rain tomorrow”

▶ We cannot exactly establish whether it will rain tomorrow or
not, due to our incomplete knowledge about our world

▶ We can estimate to which degree this is probable

▶ Consider a propositional statement (formula) ϕ
▶ Interpretation (world) I ∈ W,

I : W → {0,1}

▶ I(ϕ) = 1 means ϕ is true in I, denoted I |= ϕ

▶ Each interpretation I depicts some concrete world
▶ Given n propositional letters, |W | = 2n

▶ In uncertainty theory, we do not know which interpretation
I is the actual one

▶ One may construct a probability distribution over the worlds

Pr : W → [0,1]∑
I Pr(I) = 1

▶ Pr(I) indicates the probability that I is the actual world
▶ Probability Pr(ϕ) of a statement ϕ in Pr

Pr(ϕ) =
∑
I|=ϕ

Pr(I)

▶ Pr(ϕ) is the probability of the event: "ϕ is true"

Example (Sport Cars)
▶ Sport Car:

∀x , hp, sp, ac SportCar(x) ↔ HP(x , hp) ∧ Speed(x , sp) ∧ Acceleration(x , ac)

∧hp ≥ 210 ∧ sp ≥ 220 ∧ ac ≤ 7.0

audi_tt mg ferrari_enzo

▶ Ferrari Enzo is a Sport Car: HP = 651,Speed ≥ 350,Acc. = 3.14
▶ MG is not a Sport Car: HP = 59,Speed = 170,Acc. = 14.3
▶ Is Audi TT 2.0 a Sport Car ? HP = unknown,Speed = 243,Acc. = 6.9

▶ We can estimate from a training set (Naive Bayes Classification)

Pr(SportCar|AudiTT) = Pr(AudiTT |SportCar) · Pr(SportCar) · (1/Pr(AudiTT))

≈
Pr(speed ≤ 243|SportCar) · Pr(accel ≥ 6.9|SportCar) · Pr(SportCar)

Pr(speed ≤ 243) · Pr(accel ≥ 6.9)

Vague Statements

▶ A statement is vague whenever it involves vague concepts
or vague objects
▶ Heavy rain
▶ Tall person
▶ Hot temperature
▶ The dunes in a desert

▶ The truth of a vague statement is a matter of degree, as it
is intrinsically difficult to establish whether the statement is
entirely true or false
▶ There are 33 ◦C. Is it hot?

▶ A concept is vague whenever its extension is deemed
lacking in clarity
▶ Aboutness of a picture or piece of text
▶ Tall person
▶ High temperature
▶ Nice weather
▶ Adventurous trip
▶ Similar proof

▶ Vague concepts:
▶ Are abundant in everyday speech and almost inevitable
▶ Their meaning is often subjective and context dependent

▶ An object is vague whenever its identity is lacking in clarity
▶ Dust
▶ Cloud
▶ Dunes
▶ Sun

▶ Vague objects:
▶ Are not identical to anything, except to themselves

(reflexivity)
▶ Are characterised by a vague identity relation (e.g. a

similarity relation)

TripAdvisor: Hotel User Judgments

Vague Statements (cont.)

▶ A statement is true to some degree, which is taken from a
truth space (usually [0,1])

▶ The convention prescribing that a proposition is either true
or false is changed towards graded propositions

▶ E.g., “heavy rain”
▶ The compatibility of “heavy” in the phrase “heavy rain” is

graded and the degree depends on the amount of rain is
falling

▶ The intensity of precipitation is expressed in terms of a
precipitation rate R: volume flux of precipitation through a
horizontal surface, i.e. m3/m2s = ms−1

▶ It is usually expressed in mm/h

“Heavy rain” continued...E.g., in weather forecasts one may find:

▶ Rain intensity measured as precipitation rate R: volume flux of
precipitation through a horizontal surface, i.e. m3/m2h = mh−1

Rain. Falling drops of water larger than 0.5 mm in diameter. “Rain” usually implies that the
rain will fall steadily over a period of time;

Light rain. Rain falls at the rate of 2.6 mm or less an hour;
Moderate rain. Rain falls at the rate of 2.7 mm to 7.6 mm an hour;

Heavy rain. Rain falls at the rate of 7.7 mm an hour or more.

▶ Quite harsh distinction: R = 7.7mm/h → heavy rain
R = 7.6mm/h → moderate rain

▶ This is clearly unsatisfactory, as quite naturally

▶ The more rain is falling, the more the sentence “heavy rain”
is true

▶ Vice-versa, the less rain is falling the less the sentence is
true

▶ In other words, that the sentence “heavy rain” is no longer either
true or false, but is intrinsically graded

▶ Even if we have complete knowledge about the current
world, i.e. exact specification of the precipitation rate

▶ More fine grained approach:

▶ Define the various types of rains as

▶ Light rain, moderate rain and heavy rain are vague
concepts

▶ Consider a propositional statement ϕ

▶ A propositional interpretation I maps ϕ to a truth degree in [0,1]

I(ϕ) ∈ [0,1]

▶ I.e., we are unable to establish whether a statement is entirely
true or false due the occurrence of vague concept

▶ Vague statements are truth-functional

▶ Degree of truth of a statement can be calculated from the
degrees of truth of its constituents

▶ Note that this is not possible for uncertain statements

▶ Example of truth functional interpretation of vague statements:

I(ϕ ∧ ψ) = min(I(ϕ), I(ψ))
I(ϕ ∨ ψ) = max(I(ϕ), I(ψ))
I(¬ϕ) = 1− I(ϕ)

Example

▶ Sport Car:

∀x , hp, sp, ac SportCar(x)↔ 0.3 · HP(x , hp) + 0.2 · Speed(x , sp) + 0.5 · Accel(x , ac)

▶ Each feature, gives a degree of truth depending on the value and the
membership function

HP(x , hp) = rs(180, 250)(hp)

Speed(x , sp) = rs(180, 240)(sp)

Accel(x , ac) = ls(6.0, 8.0)(ac)

ls(a,b) rs(a,b)

▶ Degree of truth of SportCar(AudiTT): 0.3 · 0.28 + 0.3 · 1.0 + 0.5 · 0.55 = 0.447

▶ The fuzzy membership functions can be learned from a training set (large
literature)

HP(x, hp) = rs(192, 242)(hp)

Speed(x, sp) = rs(193, 234)(sp)

Accel(x, ac) = ls(6.5, 7.5)(ac)

ls(a,b) rs(a,b)
▶ Learned Training Sport Class:

∀x, hp, sp, ac TrainingSportCar(x)↔ 0.3 · HP(x, hp) + 0.2 · Speed(x, sp) + 0.5 · Accel(x, ac)

▶ Now, a classification method can be applied: e.g. kNN classifier

∀x, hp, sp, ac SportCar(x)↔
∑

y∈Topk (x) Similar(x, y) · TrainingSportCar(y)

∀x, hp, sp, ac Similar(x, y)↔ 0.3 · HP(x, hpx) · HP(y, hpy) + 0.2 · Speed(x, spx) · Speed(y, spy) +
+ 0.5 · Accel(x, acx) · Accel(y, acy)

where Topk (x) is the set of top-k ranked most similar cars to car x

Uncertain & Vague Statements

▶ Recap:
▶ In a probabilistic setting each statement is either true or

false, but there is e.g. a probability distribution telling us
how probable each interpretation/sentence is

I(ϕ) ∈ {0,1},Pr(I) ∈ [0,1] and Pr(ϕ) =
∑
I|=ϕ

Pr(I) ∈ [0,1]

▶ In vagueness theory instead, sentences are graded

I(ϕ) ∈ [0,1]

Uncertain Vague Statements

▶ Are there sentences combining the two orthogonal
concepts of uncertainty and vagueness?

▶ Yes, and we use them daily ! E.g.,
▶ “Very likely there will be heavy rain tomorrow"

▶ This type of sentences are called uncertain vague
sentences

▶ Essentially, there is
▶ uncertainty about the world we will have tomorrow
▶ vagueness about the various types of rain

▶ Exercise: formalise
▶ “Quite unlikely, I will pay to many of you some fair amount of

money if the temperature in the following days will be
slighlty higher than now”

▶ Consider a propositional statement ϕ

▶ A model for uncertain vague sentences:

▶ Define probability distribution over worlds I ∈W , i.e.

Pr(I) ∈ [0,1],
∑
I

Pr(I) = 1

▶ Sentences are graded: each interpretation I ∈W is truth
functional and maps sentences into [0,1]

I(ϕ) ∈ [0,1]

▶ For a sentence ϕ, consider the expected truth of ϕ

ET (ϕ) =
∑
I

Pr(I) · I(ϕ) .

▶ Note: if I is bivalent (that is, I(ϕ) ∈ {0,1}) then ET (ϕ) = Pr(ϕ)

Uncertainty or Vagueness ?

▶ The distinction between uncertainty and vagueness is not
always clear: depends on the assumptions

▶ (Multimedia) Information Retrieval:

Query: “I’m looking for a house”

System Answer: score/degree 0.83

▶ What’s behind the computational model?

▶ Probabilistic model
▶ Assumption: a multimedia object is either relevant or not relevant to a

query q
▶ Score: The probability of being a multimedia object o relevant (Rel) to q

score := Pr(Rel | q, o)

▶ Vague/Fuzzy model
▶ Assumption: a multimedia object o is about a semantic index term (t ∈ T)

to some degree in [0, 1]
▶ The mapping of objects o ∈ O to semantic entities t ∈ T is called semantic

annotation
F : O× T→ [0, 1]

F (o, t) indicates to which degree the multimedia object o is about the
semantic index term t

▶ Score: The evaluation of how much the multimedia object o is about the
the information need q

score := F (o, q)

Probability & Propositional Logic

▶ A statement φ is either true or false
▶ Due to lack of knowledge we can only estimate to which probability

degree they are true or false
▶ Usually we have a possible world semantics with a distribution over

possible worlds
▶ Possible world: any classical interpretation I, mapping any statement φ

into {0, 1}

W = {I classical interpretation}, I(φ) ∈ {0, 1}

▶ Probability distribution: a mapping

µ : W → [0, 1], µ(I) ∈ [0, 1]

such that ∑
I∈W

µ(I) = 1

▶ µ(I) indicates the probability that the world I is indeed the actual one

▶ A statement φ corresponds to the event Mϕ “the set of models of
φ”, i.e.

Mφ = {I | I |= φ}

▶ The probability of a statement φ is determined as

Pr(φ) = Pr(Mφ) =
∑
I|=φ

µ(I)

Example
Probabilistic setting:

φ = sprinklerOn ∨ wet

W sprinklerOn wet µ

I1 0 0 0.1
I2 0 1 0.2
I3 1 0 0.4
I4 1 1 0.3

1 =
∑
I∈W

µ(I)

Pr(φ) = Pr({I2, I3, I4})
= 0.2 + 0.4 + 0.3 = 0.9

Properties of probabilistic formulae

Pr(φ ∧ ψ) = Pr(φ) + Pr(ψ)− Pr(φ ∨ ψ)
Pr(φ ∧ ψ) ≤ min(Pr(φ),Pr(ψ))
Pr(φ ∧ ψ) ≥ max(0,Pr(φ) + Pr(ψ)− 1)
Pr(φ ∨ ψ) = Pr(φ) + Pr(ψ)− Pr(φ ∧ ψ)
Pr(φ ∨ ψ) ≤ min(1,Pr(φ) + Pr(ψ))
Pr(φ ∨ ψ) ≥ max(Pr(φ),Pr(ψ))
Pr(¬φ) = 1− Pr(φ)
Pr(⊥) = 0
Pr(⊤) = 1

Probabilistic Knowledge Bases

▶ Finite nonempty set of basic events Φ= {p1, . . . ,pn}
▶ Event φ: Boolean combination of basic events

▶ Logical constraint ψ⇐φ: events ψ and φ: “φ implies ψ”

▶ Conditional constraint (ψ|φ)[l ,u]: events ψ and φ, and
l ,u ∈ [0,1]: “conditional probability of ψ given φ is in [l ,u]”

▶ ψ ≥ l is a shortcut for (ψ|⊤)[l ,1], ψ ≤ u is a shortcut for
(ψ|⊤)[0,u]

▶ Probabilistic knowledge base KB =(L,P):
▶ finite set of logical constraints L
▶ finite set of conditional constraints P

Example

Probabilistic knowledge base KB = (L,P):
▶ L = {bird⇐eagle}:

“Eagles are birds”

▶ P = {(have_legs |bird)[1,1], (fly |bird)[0.95,1]}:
“Birds have legs”
“Birds fly with a probability of at least 0.95”

▶ World I: truth assignment to all basic events in Φ

▶ IΦ: all worlds for Φ

▶ Probabilistic interpretation Pr : probability distribution on IΦ
▶ Pr(φ) : sum of all Pr(I) such that I ∈ IΦ and I |=φ

Pr(φ) =
∑
I |=φ

Pr(I)

▶ Pr(ψ|φ): if Pr(φ)>0, then

Pr(ψ|φ)= Pr(ψ ∧ φ)
Pr(φ)

▶ Truth under Pr :
▶ Pr |= ψ⇐φ iff Pr(ψ ∧φ)=Pr(φ)

(iff Pr(ψ⇐φ)=1)
▶ Pr |= (ψ|φ)[l ,u] iff Pr(ψ ∧ φ)∈ [l ,u] ·Pr(φ)

(iff either Pr(φ)=0 or Pr(ψ|φ)∈ [l ,u])

Example

▶ Set of basic propositions Φ = {bird, fly}.
▶ IΦ contains exactly the worlds I1, I2, I3, and I4 over Φ:

fly ¬fly
bird I1 I2
¬bird I3 I4

▶ Some probabilistic interpretations:
Pr1 fly ¬fly
bird 19/40 1/40
¬bird 10/40 10/40

Pr2 fly ¬fly
bird 0 1/3
¬bird 1/3 1/3

▶ Pr1(fly ∧ bird)=19/40 and Pr1(bird)=20/40 .
▶ Pr2(fly ∧ bird)=0 and Pr2(bird)=1/3 .
▶ ¬fly⇐bird is false in Pr1, but true in Pr2 .
▶ (fly |bird)[.95,1] is true in Pr1, but false in Pr2 .

Satisfiability and Logical Entailment

▶ Pr is a model of KB = (L,P) iff Pr |= F for all F ∈L ∪ P

▶ KB is satisfiable iff a model of KB exists

▶ KB ||=(ψ|φ)[l ,u]: (ψ|φ)[l ,u] is a logical consequence of KB
iff every model of KB is also a model of (ψ|φ)[l ,u]

▶ KB ||=tight (ψ|φ)[l ,u]: (ψ|φ)[l ,u] is a tight logical
consequence of KB iff l (resp., u) is the infimum (resp.,
supremum) of Pr(ψ|φ) subject to all models Pr of KB with
Pr(φ)>0

Example

▶ Probabilistic knowledge base:

KB = ({bird⇐eagle} ,
{(have_legs |bird)[1,1], (fly |bird)[0.95,1]})

▶ KB is satisfiable, since

Pr with Pr(bird ∧ eagle ∧ have_legs ∧ fly) = 1 is a model

▶ Some conclusions under logical entailment:

KB ||=(have_legs |bird)[0.3,1]KB ||=(fly |bird)[0.6,1]

▶ Tight conclusions under logical entailment:

KB ||=tight (have_legs |bird)[1,1]

KB ||=tight (fly |bird)[0.95,1]

KB ||=tight (have_legs |eagle)[1,1]

KB ||=tight (fly |eagle)[0,1]

Deciding Model Existence / Satisfiability

Theorem: The probabilistic knowledge base KB =(L,P) has a
model Pr iff the following system of linear constraints LC over
the variables yr (r ∈R), where R = {I ∈IΦ | I |= L}, is solvable:∑

r∈R, r |=¬ψ∧φ
−l yr +

∑
r∈R, r |=ψ∧φ

(1− l) yr ≥ 0 (∀(ψ|φ)[l ,u]∈P), l > 0

∑
r∈R, r |=¬ψ∧φ

u yr +
∑

r∈R, r |=ψ∧φ
(u − 1) yr ≥ 0 (∀(ψ|φ)[l ,u]∈P,u < 1)∑

r∈R
yr = 1

yr ≥ 0 (for all r ∈R)

Explanation
▶ A probability distribution Pr is a model of (ψ|φ)[l, u] iff

Pr(ψ | φ) ∈ [l, u] iff Pr(ψ ∧ φ)/Pr(φ) ∈ [l, u]

iff Pr(ψ ∧ φ) ∈ [l · Pr(φ), u · Pr(φ)]

iff Pr(ψ ∧ φ) ≥ l · Pr(φ) and , Pr(ψ ∧ φ) ≤ u · Pr(φ)

Pr(ψ ∧ φ) ≥ l · Pr(φ) iff Pr(ψ ∧ φ)− l · Pr(φ) ≥ 0

iff Pr(Mψ∧φ)− l · Pr(Mφ) ≥ 0

iff Pr(Mψ∧φ)− l · Pr(Mψ∧φ ∪ M¬ψ∧φ) ≥ 0

iff Pr(Mψ∧φ)− l · Pr(Mψ∧φ)− l · Pr(M¬ψ∧φ) ≥ 0

iff (1− l) · Pr(Mψ∧φ)− l · Pr(M¬ψ∧φ) ≥ 0

iff (1− l)
∑

r|=ψ∧φ
µ(r)− l

∑
Ir|=¬ψ∧φ

µ(r) ≥ 0

iff
∑

r|=ψ∧φ
(1− l)µ(r) +

∑
I|=¬ψ∧φ

(−l)µ(r) ≥ 0

▶ As we are looking for the values of µ(r), by setting yr = µ(r), any solution to the variables yr under

∑
r|=ψ∧φ

(1− l)yr +
∑

I|=¬ψ∧φ
(−l)yr ≥ 0

∑
r∈W

yr = 1

yr ≥ 0 for all r ∈ W

is a probabilistic model of (ψ|φ)[l, 1]. The equations for the upper bound are derived similarly.

Computing Tight Logical Consequences

Theorem: Suppose KB =(L,P) has a model Pr such that
Pr(α)>0. Then, l (resp., u) such that KB ||=tight (β|α)[l ,u] is
given by the optimal value of the following linear program over
the variables yr (r ∈R), where R = {I ∈IΦ | I |= L}:

minimize (resp., maximize)
∑

r∈R, r |= β∧α
yr subject to∑

r∈R, r |=¬ψ∧φ
−l yr +

∑
r∈R, r |=ψ∧φ

(1− l) yr ≥ 0 (∀(ψ|φ)[l ,u]∈P), l > 0

∑
r∈R, r |=¬ψ∧φ

u yr +
∑

r∈R, r |=ψ∧φ
(u − 1) yr ≥ 0 (∀(ψ|φ)[l ,u]∈P),u < 1∑

r∈R
yr = 1

yr ≥ 0 (for all r ∈R)

Bayesian Networks

Bayesian network (BN): compact specification of a joint distribution, based on
a graphical notation for conditional independencies:

▶ a set of nodes; each node represents a random variable
▶ a directed, acyclic graph (link ≈ “directly influences”)
▶ a conditional distribution for each node given its parents:

P(Xi |Parents(Xi))

▶
Pr(X1, . . . ,Xn) = Πn

i=1Pr(Xi | parents(Xi)) .

Any joint distribution can be represented as a BN.

Joint probability function is

Pr(GrassWet, Sprinkler, Rain) = Pr(GrassWet | Sprinkler, Rain) (2)

·Pr(Sprinkler | Rain) · Pr(Rain)

The model can answer questions like “What is the probability that it is raining, given the grass is wet?”

Pr(Rain = T | GrassWet = T) =
Pr(Rain = T , GrassWet = T)

Pr(GrassWet = T)

=

∑
Y∈{T ,F} Pr(Rain = T , GrassWet = T , Sprinkler = Y)∑

Y1,Y2∈{T ,F} Pr(GrassWet = T , (Rain = Y1, Sprinkler = Y2))

=
0.99 · 0.01 · 0.2 + 0.8 · 0.99 · 0.2

0.99 · 0.01 · 0.2 + 0.9 · 0.4 · 0.8 + 0.8 · 0.99 · 0.2 + 0 · 0.6 · 0.8
≈ 0.3577

Encoding of Bayesian Network in Probabilistic
Propositional Logic

▶ For every node a, we use a propositional letters a(T) (a is true), a(F) (a is false)
▶ We also need (a(T)↔ ¬a(F)) = 1)
▶ If a node a has no parents: a(T) = p, where p is its associated probability
▶ If a node has parents, we encode its associated conditional probability table using conditional probability

formulae

(Sprinkler(T) | Rain(F)) = 0.4

(Sprinkler(T) | Rain(T)) = 0.01

(GrassWet(T) | Sprinkler(F) ∧ Rain(F)) = 0.0

(GrassWet(T) | Sprinkler(F) ∧ Rain(T)) = 0.8

(GrassWet(T) | Sprinkler(T) ∧ Rain(F)) = 0.9

(GrassWet(T) | Sprinkler(T) ∧ Rain(T)) = 0.99 .

Independent Choice Logic: Propositional Case

▶ A knowledge base KB = ⟨P, C⟩ is a set of propositional formulae P together with a choice space C
▶ A choice space C is a set C of choices of the form {(A1 : α1), ..., (An : αn)}, where Ai is an atom and

the αi sum-up to 1

▶ A total choice T is a set of atoms such that from each choice Cj ∈ C there is exactly one atom Aj
i ∈ Cj in T

▶ The probability of a total choice T is Pr(T) = Pr(
∧

Aj
i∈T

Aj
i) =

∏
Aj

i∈T
α

j
i

▶ A query is a propositional formula q. The probability of q w.r.t. KB is

Pr(q | KB) =
∑

{T |P∪T |=q}
Pr(T)

▶ Example:
P = {a→ c, b → c}
C = {C1 = {a : 0.7,¬a : 0.3},C2 = {b : 0.6,¬b : 0.4}}

Total Choice Pr(T)
T1 {a, b} 0.42
T2 {a,¬b} 0.28
T3 {¬a, b} 0.18
T4 {¬a,¬b} 0.12

Pr(c | KB) = Pr(T1) + Pr(T2) + Pr(T3) = 1− Pr(T4) = 0.88

Fuzzyness & Logic (Basics)

▶ Statements involve concepts for which there is no exact
definition, such as
▶ tall, small, close, far, cheap, expensive, “is about”, “similar

to”.
▶ A statements is true to some degree, which is taken from a

truth space
▶ E.g., “Hotel Verdi is close to the train station to degree

0.83”
▶ E.g., “The image is about a sun set to degree 0.75”
▶ Truth space: set of truth values L and an partial order ≤
▶ Many-valued Interpretation: a function I mapping formulae

into L, i.e. I(φ) ∈ L
▶ Mathematical Fuzzy Logic: L = [0,1], but also {0

n ,
1
n , . . . ,

n
n}

for an integer n≥1

▶ Problem: what is the interpretation of e.g. φ ∧ ψ?
▶ E.g., if I(φ) = 0.83 and I(ψ) = 0.2, what is the result of 0.83 ∧ 0.2?

▶ More generally, what is the result of n∧m, for n,m ∈ [0,1]?
▶ The choice cannot be any arbitrary computable function,

but has to reflect some basic properties that one expects to
hold for a “conjunction”

▶ Norms: functions that are used to interpret connectives
such as ∧,∨,¬,→
▶ t-norm: interprets conjunction
▶ s-norm: interprets disjunction

▶ Norms are compatible with classical two-valued logic

From Crisp Sets to Fuzzy Sets

▶ Let X be a universal set of objects
▶ The power set, denoted 2A, of a set A ⊂ X , is the set of

subsets of A, i.e.,

2A = {B | B ⊆ A}

▶ Often sets are defined as

A = {x | P(x)}

▶ P(x) is a statement “x has property P”
▶ P(x) is either true or false for any x ∈ X

▶ Examples of universe X and subsets A,B ∈ 2X may be

X = {x | x is a day}
A = {x | x is a rainy day}
B = {x | x is a day with precipitation rate R ≥ 7.5mm/h}

▶ In the above case: B ⊆ A ⊆ X
▶ The (crisp) membership function of a set A ⊆ X :

χA : X → {0,1}

where χA(x) = 1 iff x ∈ A
▶ Note that for sets A,B ∈ 2X

A ⊆ B iff ∀x ∈ X . χA(x) ≤ χB(x)

▶ Fuzzy set A: χA : X → [0,1], or simply

A : X → [0,1]

▶ Fuzzy power set over X , is denoted 2̃X , i.e. the set of all
fuzzy sets over X

▶ Example: the fuzzy set

C = {x | x is a day with heavy precipitation rate R}

is defined via the membership function

χC(x) =

1 if R ≥ 7.5
(x − 5)/2.5 if R ∈ [5,7.5)
0 otherwise

▶ Cardinality of a fuzzy set A: e.g. using sigma-count

|A| =
∑
x∈X

χA(x)

Fuzzy Sets Construction

▶ The usefulness of fuzzy sets depends critically on
appropriate membership functions

▶ Methods for fuzzy membership functions construction is
largely addressed in literature

▶ Fuzzy membership functions may depend on the context and
may be subjective

▶ Shape may be quite different
▶ Usually, it is sufficient to consider functions

(a) (b)

(c) (d)
(a) Trapezoidal trz(a, b, c, d); (b) Triangular tri(a, b, c); (c) left-shoulder ls(a, b); (d) right-shoulder rs(a, b)

▶ Simple and typically satisfactory method (numerical domain):

▶ uniform partitioning into 5 fuzzy sets

Fuzzy sets construction using trapezoidal functions

Fuzzy sets construction using triangular functions

▶ Another popular method is based on clustering
▶ Use Fuzzy C-Means to cluster data into 5 clusters

▶ Fuzzy C-Means extends K-Means to accommodates
graded membership

▶ From the clusters c1, . . . , c5 take the centroids π1, . . . , π5

▶ Build the fuzzy sets from the centroids

Fuzzy sets construction using clustering

Norm-Based Fuzzy Set Operations

▶ Standard fuzzy set operations are not the only ones
▶ Most notable ones are triangular norms

▶ t-norm ⊗ for set intersection
▶ t-conorm ⊕ (also called s-norm) for set union
▶ negation ⊖ for set complementation
▶ implication→ for set inclusion

▶ These functions satisfy some properties that one expects
to hold

Properties for t-norms and s-norms

Axiom Name T-norm S-norm
Taututology/Contradiction a⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b ⊗ a a⊕ b = b ⊕ a
Associativity (a⊗ b)⊗ c = a⊗ (b ⊗ c) (a⊕ b)⊕ c = a⊕ (b ⊕ c)
Monotonicity if b ≤ c, then a⊗ b ≤ a⊗ c if b ≤ c, then a⊕ b ≤ a⊕ c

Properties for implication and negation functions

Axiom Name Implication Function Negation Function
Tautology / Contradiction 0→ b = 1, a→ 1 = 1, 1→ 0 = 0 ⊖ 0 = 1, ⊖ 1 = 0
Antitonicity if a ≤ b, then a→ c ≥ b → c if a ≤ b, then ⊖ a ≥ ⊖ b
Monotonicity if b ≤ c, then a→ b ≤ a→ c

▶ By commutativity, ⊗ and ⊕ are monotone also in the first
argument

▶ ⊗ is indempotent if a⊗ a = a, for all a ∈ [0,1]
▶ Megation function ⊖ is involutive iff ⊖⊖ a = a, for all

a ∈ [0,1].
▶ Salient negation functions are:

Standard or Łukasiewicz negation: ⊖la = 1− a;
Gödel negation: ⊖ga is 1 if a = 0, else is 0.

▶ Łukasiewicz negation is involutive, Gödel negation is not.

▶ Salient t-norm functions are:
Gödel t-norm: a⊗g b = min(a,b);
Bounded difference or Łukasiewicz t-norm:

a⊗l b = max(0,a + b − 1);
Algebraic product or product t-norm: a⊗p b = a · b;
Drastic product: a⊗d b ={

0 when (a,b) ∈ [0,1[×[0,1[
min(a,b) otherwise

▶ Salient s-norm functions are:
Gödel s-norm: a⊕g b = max(a,b);
Bounded sum or Łukasiewicz s-norm:

a⊕l b = min(1,a + b);
Algebraic sum or product s-norm: a⊕p b = a + b − ab;
Drastic sum: a⊕d b ={

1 when (a,b) ∈]0,1]×]0,1]
max(a,b) otherwise

Salient properties of norms:
▶ Ordering among t-norms (⊗ is any t-norm):

⊗d ≤ ⊗ ≤ ⊗g

⊗d ≤ ⊗l ≤ ⊗p ≤ ⊗g .

▶ The only idempotent t-norm is ⊗g .
▶ The only t-norm satisfying a⊗ a = 0 for all a ∈ [0,1[is ⊗d .
▶ Ordering among s-norms (⊕ is any s-norm):

⊕g ≤ ⊕ ≤ ⊕d

⊕g ≤ ⊕p ≤ ⊕l ≤ ⊕d .

▶ The only idempotent s-norm is ⊕g .
▶ The only s-norm satisfying a⊕ a = 1 for all a ∈]0,1] is ⊕d .
▶ The dual s-norm of ⊗ is defined as

a⊕ b = 1− (1− a)⊗ (1− b) .

▶ Kleene-Dienes implication: x → y = max(1− x , y) is called
▶ Fuzzy modus ponens: let a ≥ n and a→ b ≥ m

▶ Under Kleene-Dienes implication, we infer that if n > 1−m
then b ≥ m

▶ Under r-implication relative to a t-norm ⊗, we infer that
b ≥ n ⊗m

▶ Composition of two fuzzy relations R1 : X × X → [0,1] and
R2 : X × X → [0,1]: for all x , z ∈ X
▶ (R1 ◦ R2)(x , z) = supy∈X R1(x , y)⊗ R2(y , z)

▶ A fuzzy relation R is transitive iff for all x , z ∈ X
R(x , z)≥ (R ◦ R)(x , z)

Łukasiewicz, Gödel, Product logic and Standard Fuzzy
logic

▶ One distinguishes three different sets of fuzzy set
operations (called fuzzy logics)
▶ Łukasiewicz, Gödel, and Product logic
▶ Standard Fuzzy Logic (SFL) is a sublogic of Łukasiewicz

▶ min(a, b) = a⊗l (a→l b), max(a, b) = 1−min(1− a, 1− b)
Łukasiewicz Logic Gödel Logic Product Logic SFL

a⊗ b max(a + b − 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a + b, 1) max(a, b) a + b − a · b max(a, b)

a→ b min(1− a + b, 1)

{
1 if a ≤ b
b otherwise

min(1, b/a) max(1− a, b)

⊖ a 1− a

{
1 if a = 0
0 otherwise

{
1 if a = 0
0 otherwise

1− a

▶ Mostert–Shields theorem: any continuous t-norm can be
obtained as an ordinal sum of these three

Some additional properties

Property Łukasiewicz Logic Gödel Logic Product Logic SFL
x ⊗⊖ x = 0 •
x ⊕⊖ x = 1 •
x ⊗ x = x • •
x ⊕ x = x • •
⊖⊖ x = x • •

x → y = ⊖ x ⊕ y • •
⊖ (x → y) = x ⊗⊖ y • •
⊖ (x ⊗ y) = ⊖ x ⊕⊖ y • • • •
⊖ (x ⊕ y) = ⊖ x ⊗⊖ y • • • •

▶ Note: If all conditions in the upper part of a column have to
be satisfied then we collapse to classical two-valued logic

Fuzzy Modifiers

▶ Fuzzy modifiers: interesting feature of fuzzy set theory
▶ A fuzzy modifier apply to fuzzy sets to change their

membership function
▶ Examples: very, more_or_less, and slightly

▶ A fuzzy modifier m represents a function

fm : [0, 1]→ [0,1]

Example: fvery(x)= x2, fmore_or_less(x) = tri(0, x , 1), fslightly(x) =
√

x

▶ Modelling the fuzzy set of very heavy rain:

χvery heavy rain(x) = fvery(χheavyrain(x))

= (χheavyrain(x))2

= (rs(5, 7.5)(x))2

▶ A typical shape of modifiers: linear modifiers lm(a,b)

0 1

1

a

b

x

▶ Note: linear modifiers require one parameter c only

lm(a,b) = lm(c)

where a = c/(c + 1) , b = 1/(c + 1)

Fuzzy Quantifiers
▶ Classical logic has two quantifiers:

▶ the universal ∀

▶ the existential ∃

▶ These are extremal ones among several other linguistic quantifiers, such as

▶ all, most, many, about half, few, some
▶ A quantifier, such as most, can be represented as a fuzzy subset (r ∈ [0, 1])

Q : [0, 1]→ [0, 1]

with Q(0) = 0, Q(1) = 1

▶ the membership grade Q(r) indicates the degree to which the proportion r satisfies the linguistic

quantifier that Q represents

▶ Degree of truth of “Most birds fly” is

most(
|Bird ∧ Fly|
|Fly|

)

Mathematical Fuzzy Logics Basics

▶ Classical Logics for KR are grounded on Mathematical
Logic

▶ Fuzzy Logics for KR are grounded on Mathematical Fuzzy
Logic

▶ A statement has a degree of truth
▶ Truth space: set of truth values L
▶ Given a statement ϕ

▶ Fuzzy Interpretation: a function I mapping ϕ into L, i.e.

I(φ) ∈ L

▶ Usually

L = [0,1]

Ln = {0, 1
n
, . . . ,

n − 2
n − 1

, . . . ,1} (n≥1)

▶ Fuzzy statement: for r ∈ [0,1]

⟨ϕ, r⟩

The degree of truth of ϕ is equal or greater than r

▶ Examples:
▶ Fuzzy FOL: ⟨RainyDay(d),0.75⟩
▶ Fuzzy LPs: ⟨RainyDay(d)←,0.75⟩
▶ Fuzzy RDFS: ⟨⟨d , type,RainyDay⟩,0.75⟩
▶ Fuzzy DLs: ⟨d :RainyDay ,0.75⟩

▶ Fuzzy interpretation I:
▶ Maps each basic statement pi into [0,1]
▶ Extended inductively to all statements

I(ϕ ∧ ψ) = I(ϕ)⊗ I(ψ)
I(ϕ ∨ ψ) = I(ϕ)⊕ I(ψ)
I(ϕ→ ψ) = I(ϕ)→ I(ψ)
I(ϕ↔ ψ) = I(ϕ→ ψ)⊗ I(ψ → ϕ)
I(¬ϕ) = ⊖I(ϕ)
I(∃x .ϕ) = supa∈∆I Ia

x (ϕ)
I(∀x .ϕ) = infa∈∆I Ia

x (ϕ) ,

where
▶ ∆I is the domain of I
▶ ⊗, ⊕,→, and ⊖ are the t-norms, t-conorms, implication

functions, a negation functions
▶ The function Ia

x is as I except that x is interpreted as a

Example

In Propositional Lukasiewicz logic:

φ = Cold ∧ Cloudy

I Cold Cloudy I(φ)
I1 0 0.1 max(0,0 + 0.1− 1) = 0.0
I2 0.3 0.4 max(0,0.3 + 0.4− 1) = 0.0
I3 0.7 0.8 max(0,0.7 + 0.8− 1) = 0.5
I4 1 1 max(0,1 + 1− 1) = 1.0
...

...
...

...

▶ One may also consider the following abbreviations:

ϕ ∧g ψ
def
= ϕ ∧ (ϕ→ ψ)

ϕ ∨g ψ
def
= (ϕ→ ψ)→ ϕ) ∧g (ψ → ϕ)→ ψ)

¬⊗ϕ def
= ϕ→ 0

⟨ϕ ≤ r⟩ def
= ⟨¬lϕ,1− r⟩

▶ In case→ is the r-implication based on ⊗, then
▶ ∧g is Gödel t-norm
▶ ∨g is Gödel s-norm
▶ ¬⊗ is interpreted as the negation function related to ⊗

▶ I satisfies ⟨ϕ, r⟩, or I is a model of ⟨ϕ, r⟩

I |= ⟨ϕ, r⟩ iff I(ϕ) ≥ r

▶ I is a model of ϕ if I(ϕ) = 1
▶ Fuzzy knowledge base K: finite set of fuzzy statements
▶ I satisfies (is a model of) K: I |= K iff it satisfies each

element in it
▶ Best entailment degree of ϕ w.r.t. K:

bed(K, ϕ) = sup {r | K |= ⟨ϕ, r⟩}

▶ Best satisfiability degree of ϕ w.r.t. K:

bsd(K, ϕ) = sup
I
{I(ϕ) | I |= K}

▶ Fuzzy Modus Ponens: for r-implication→, for r , s ∈ [0, 1]:

⟨ϕ, r⟩, ⟨ϕ→ ψ, s⟩ |= ⟨ψ, r ⊗ s⟩

Informally,

from φ ≥ r and (φ→ ψ) ≥ s infer ψ ≥ r ∧ s

▶ Salient equivalences:

¬¬ϕ ≡ ϕ (Ł,SFL)

ϕ ∧ ϕ ≡ ϕ (G,SFL)

¬(ϕ ∧ ¬ϕ) ≡ 1 (Ł,G,Π)

ϕ ∨ ¬ϕ ≡ 1 (Ł)

▶ Salient equivalences:

Ł + G ≡ Boolean Logic
Ł +Π ≡ Boolean Logic
G +Π ≡ Boolean Logic

Example
In Lukasiewicz logic:

φ = ⟨Cold ∧ Cloudy ,0.4⟩

Read: Cold ∧ Cloudy ≥ 0.4

I Cold Cloudy I(φ)
I1 0 0.1 0.4→ 0.0 = min(1,1− 0.4 + 0.0) = 0.6
I2 0.3 0.4 0.4→ 0.0 = min(1,1− 0.4 + 0.0) = 0.6
I3 0.7 0.8 0.4→ 0.5 = min(1,1− 0.4 + 0.5) = 1.0
I4 1 1 0.4→ 1.0 = min(1,1− 0.4 + 1.0) = 1.0
...

...
...

...

I1 ̸|= φ
I2 ̸|= φ
I3 |= φ
I4 |= φ
...

...
...

On Witnessed Models

▶ Witnessed interpretation I:

I(∃x .ϕ) = Ia
x (ϕ), for some a ∈ ∆I (3)

I(∀x .ϕ) = Ia
x (ϕ), for some a ∈ ∆I (4)

▶ The supremum (resp. infimum) are attained at some point
▶ Classical interpretations are witnessed
▶ Fuzzy interpretations may not be witnessed
▶ E.g., I is not witnessed as Eq. (3) not satisfied:

∆I = N
In

x (A(x)) = 1− 1/n < 1, for all n

I(∃x .A(x)) = sup
n
In

x (A(x))

= sup
n

1− 1/n = 1

Proposition (Witnessed model property)
In Łukasiewicz logic and SFL over L = [0,1], or for all cases in
which the truth space L is finite, a fuzzy KB has a witnessed
fuzzy model iff it has a fuzzy model.
▶ Not true for Gödel and product logic over L = [0,1]

▶ ¬∀x p(x) ∧ ¬∃x ¬p(x) has no classical model
▶ In Gödel logic it has no finite model, but has an infinite

model: for integer n ≥ 1, let I such that I(p(n)) = 1/n

I(∀x p(x)) = inf
n

1/n = 0

I(∃x ¬p(x)) = sup
n
¬1/n = sup0 = 0

▶ IMHO: non-witnessed models make little sense in KR
▶ We will always assume that interpretations are witnessed

Fuzzy Propositional Logic: Reasoning

▶ We need to distinguish if truth space is L = [0,1] or
Ln = {0, 1

n , . . . ,
n−2
n−1 , . . . ,1}

▶ Case Ln easier: given m propositional letters, there are mn

possible interpretations
▶ We may use

▶ Operational Research
▶ Analytic Tableaux, Non-Deterministic Analytic Tableaux
▶ Reduction into Classical Propositional Logic

Operational Research: Case Łukasiewicz Logic & SFL

▶ Basic idea: translate formulae into equational constraints
about truth degrees

▶ For a formula ϕ consider a variable xϕ
▶ Intuition: xϕ will hold the degree of truth of statement ϕ
▶ Example: constraints under Łukasiewicz for ⟨¬ϕ,0.6⟩

x¬ϕ ∈ [0,1]
xϕ ∈ [0,1]

x¬ϕ = 1− xϕ

▶ We may use Mixed Integer Linear Programming for the encodings of
constraints
For Łukasiewicz:

▶ x1 ⊗l x2 = z
7→ {x1 + x2 − 1 ≤ z, x1 + x2 − 1 ≥ z − y , z ≤ 1− y , y ∈ {0, 1}},
where y is a new variable.

▶ x1 ⊕l x2 = z 7→ {x1 + x2 ≤ z + y , y ≤ z, x1 + x2 ≥ z, y ∈ {0, 1}},
where y is a new variable.

▶ x1 →l x2 = z 7→ {(1− x1)⊕l x2 = z}.
For SFL:

▶ x1 ⊗g x2 = z
7→ {z ≤ x1, z ≤ x2, x1 ≤ z + y , x2 ≤ z + (1− y), y ∈ {0, 1}},
where y is a new variable.

▶ x1 ⊕g x2 = z
7→ {z ≥ x1, z ≥ x2, x1 + y ≥ z, x2 + (1− y) ≥ z, y ∈ {0, 1}},
where y is a new variable.

▶ x1 →kd x2 = z 7→ (1− x1)⊕g x2 = z.

▶ Negation Normal Form, nnf (ϕ)

¬ ⊥ = ⊤
¬⊤ = ⊥
¬¬ϕ 7→ ϕ

¬(ϕ ∧ ψ) 7→ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) 7→ ¬ϕ ∧ ¬ψ
¬(ϕ→ ψ) 7→ ϕ ∧ ¬ψ .

1. TransformK into NNF

2. Initialize the fuzzy theory TK and the initial set of constraints CK by

TK = {ϕ | ⟨ϕ, n⟩ ∈ K}
CK = {xψ ≥ n | ⟨ϕ, n⟩ ∈ K}

3. Apply the following inference rules until no more rules can be applied
(var). For variable xϕ occurring in CK add xϕ ∈ [0, 1] to CK
(¯var). For variable x¬ϕ occurring in CK add xϕ = 1− x¬ϕ to CK
(⊥). If⊥∈ TK then CK := CK ∪ {x⊥ = 0}
(⊤). If⊤ ∈ TK then CK := CK ∪ {x⊤ = 1}

(∧). If ϕ ∧ ψ ∈ TK , then
3.1 add ϕ and ψ to TK

3.2 CK := CK ∪ {xϕ ⊗ xψ = xϕ∧ψ}

(∨). If ϕ ∨ ψ ∈ TK, then
3.1 add ϕ and ψ to TK

3.2 CK := CK ∪ {xϕ ⊕ xψ = xϕ∧ψ}

(→). If ϕ→ ψ ∈ TK, then
3.1 add nnf (¬ϕ) and ψ to TK

3.2 CK := CK ∪ {(1− xnnf (¬ϕ))→ xψ = xϕ→ψ}

sat(K): K is satisfiable iff the final set of constraints CK has
a solution

bed(K, ϕ): ▶ Add ¬ϕ to TK
▶ Add x¬ϕ ≥ 1− x , x ∈ [0,1] to CK, x new
▶ Compute final set of constraints CK
▶ Then, solve the optimisation problem

bed(K, ϕ) = min x . such that CK has a solution

bsd(K, ϕ): ▶ Add ϕ to TK
▶ Add xϕ ≥ x , x ∈ [0,1] to CK, x new
▶ Compute final set of constraints CK
▶ Then, solve the optimisation problem

bsd(K, ϕ) = max x . such that CK has a solution

Analytical Fuzzy Tableau: Case SFL

▶ Main property the method is based on:
▶ if I is model of ⟨ϕ ∧ ψ,n⟩ then I is a model of both ⟨ϕ,n⟩

and ⟨ψ,n⟩;
▶ if I is model of ⟨ϕ ∨ ψ,n⟩ then I is a model of either ⟨ϕ,n⟩

or ⟨ψ,n⟩.
▶ I cannot be a model of both ⟨p,n⟩ and ⟨¬p,m⟩ if n > 1−m.

▶ A clash is either
▶ a fuzzy statement ⟨⊥,n⟩ with n > 0; or
▶ a pair of fuzzy statements ⟨p,n⟩ and ⟨¬p,m⟩ with n > 1−m

▶ Clash-free: does not contain a clash

1. Transform K into NNF

2. Initialize the completion SK = K
3. Apply the following inference rules to SK until no more rules can be applied

4. We call a set of fuzzy statements SK complete iff none of the rules below can be
applied to SK

5. Note that rule (∨) is non-deterministic
(∧). If ⟨ϕ ∧ ψ, n⟩ ∈ SK and {⟨ϕ, n⟩, ⟨ψ, n⟩} ̸⊆ SK , then add both

⟨ϕ, n⟩ and ⟨ψ, n⟩ to SK
(∨). If ⟨ϕ ∨ ψ, n⟩ ∈ SK and {⟨ϕ, n⟩, ⟨ψ, n⟩} ∩ SK = ∅, then add

either ⟨ϕ, n⟩ or ⟨ψ, n⟩ to SK
(→). If ⟨ϕ→ ψ, n⟩ ∈ SK and ⟨nnf (¬ϕ) ∨ ψ, n⟩ ̸∈ SK, then add

⟨nnf (¬ϕ) ∨ ψ, n⟩ to SK

sat(K): K is satisfiable iff we find a complete and
clash-free completion SK of K

▶ For BED and BSD we need some more work
▶ Given K, define

NK = {0,0.5,1} ∪ {n | ⟨ϕ,n⟩ ∈ K}
N̄K = NK ∪ {1− n | n ∈ NK}
ϵ = min{d/2 | n,m ∈ N̄K,n ̸= m,d = |n −m|}

Proposition
Under SFL, given K, then for n > 0

K |= ⟨ϕ,n⟩ iff K ∪ {⟨¬ϕ,1− n + ϵ⟩} is not satisfiable .

Moreover, K is satisfiable iff it has a model over N̄K.

bed(K, ϕ): Find greatest n ∈ N̄K such that K |= ⟨ϕ,n⟩
bsd(K, ϕ): Find greatest n ∈ N̄K such that K ∪ {⟨ϕ,n⟩}

satisfiable

Non Deterministic Analytic Fuzzy Tableau

▶ Works for finitely-valued fuzzy propositional logic over Ln

▶ Works also for SFL (as in place of [0, 1], we may use N̄K)
▶ Basic idea is as for fuzzy tableau, but now we guess the truth degrees

(∧). If ⟨ϕ ∧ ψ, n⟩ ∈ SK, n1, n2 ∈ Ln such that n1 ⊗ n2 = n and
{⟨ϕ, n1⟩, ⟨ψ, n2⟩} ̸⊆ SK , then add both ⟨ϕ, n1⟩ and ⟨ψ, n2⟩ to
SK

(∨). If ⟨ϕ ∨ ψ, n⟩ ∈ SK, n1, n2 ∈ Ln such that n1 ⊕ n2 = n and
{⟨ϕ, n1⟩, ⟨ψ, n2⟩} ̸⊆ SK , then add both ⟨ϕ, n1⟩ and ⟨ψ, n2⟩ to
SK

(→). If ⟨ϕ→ ψ, n⟩ ∈ SK, n1, n2 ∈ Ln such that n1 → n2 = n and
{⟨ϕ, n1⟩, ⟨ψ, n2⟩} ̸⊆ SK , then add both ⟨ϕ, n1⟩ and ⟨ψ, n2⟩ to
SK

▶ A clash is either
▶ a fuzzy statement ⟨⊥, n⟩ with n > 0; or
▶ a pair of fuzzy statements ⟨p, n⟩ and ⟨¬p,m⟩ such that

xp ≥ n, ⊖xp ≥ m, xp ∈ Ln

has no solution

Reduction to Classical Propositional Logic: Case SFL
over [0,1]

▶ Given K, we know that we can use

Ln = N̄K = {γ1, . . . , γn}

with γi < γi+1,1 ≤ i ≤ n − 1
▶ Basic idea: use atom A≥r to represent

The truth degree of A has to be equal or greater than r

▶ Similarly for A>r , A≤r and A<r

▶ To start with, build CrispLn

▶ For all atoms A, for all 1 ≤ i ≤ n − 1,2 ≤ j ≤ n − 1

A≥γi+1 → A>γi

A>γj → A≥γj

▶ Build CrispK:

CrispK = {ρ(ϕ,n) | ⟨ϕ,n⟩ ∈ K} ∪
CrispLn ,

x y ρ(x , y)
⊤ c ⊤
⊥ 0 ⊤
⊥ c ⊥ if c > 0
A c A≥c
¬A c ¬A>1−c
ϕ ∧ ψ c ρ(ϕ, c) ∧ ρ(ψ, c)
ϕ ∨ ψ c ρ(ϕ, c) ∨ ρ(ψ, c)

Proposition
Given K under SFL over Ln, then K |= ⟨ϕ, c⟩ iff
K ∪ {⟨¬ϕ,1− c−⟩} is not satisfiable, where c− is the next
smaller value than c in Ln

sat(K): K is satisfiable iff CrispK satisfiable
bed(K, ϕ): Find greatest c ∈ Ln such that K |= ⟨ϕ, c⟩
bsd(K, ϕ): Find greatest c ∈ Ln such that K ∪ {⟨ϕ, c⟩}

satisfiable

Fuzzy Concrete Domains

▶ Allows us to deal with concepts such as young, cheap,
cold, etc.

▶ We allow also crisp constraints such as
AlarmSystem ∧ (price > 26,000),
AlarmSystem→ (deliverytime ≥ 30)

▶ Fuzzy membership functions: usually of the form

(a) (b) (c) (d)

Figure: (a) Trapezoidal function trz(a, b, c, d), (b) triangular function tri(a, b, c), (c) left shoulder
function ls(a, b), and (d) right shoulder function rs(a, b).

▶ For instance, AlarmSystem ∧ (price ls(18000,22000))

Definition (The language P(N))
LetA be a set of propositional atoms, and F a set of pairs ⟨f ,Df ⟩ each made of a feature name and an associated
concrete domain Df , and let k be a value in Df . Then the following formulae are in P(N):

1. every atom A ∈ A is a formula

2. if ⟨f ,Df ⟩ ∈ F , k ∈ Df , and c ∈ {≥,≤,=} then (f c k) is a formula

3. if ⟨f ,Df ⟩ ∈ F and c is of the form ls(a, b), rs(a, b), tri(a, b, c), trz(a, b, c, d) then (f c) is a formula

4. if ψ and φ are formulae and n ∈ [0, 1] then so are ¬ψ, ψ ∧ φ, ψ ∨ φ, ψ → φ. We use ψ ↔ φ in place
of (ψ → φ) ∧ (φ→ ψ),

5. if ψ1, . . . , ψn are formulae, then w1 · ψ1 + . . . + wn · ψn is a formula, where wi ∈ [0, 1] and
∑

i wi ≤ 1

6. if ψ is a formula and n ∈ [0, 1] then ⟨ψ, n⟩ is a formula in P(N). If n is omitted, then ⟨ψ, 1⟩ is assumed

Definition (Interpretation and models)
An interpretation I for P(N) is a function (denoted as a superscript ·I on its argument) that maps each atom inA
into a truth value AI ∈ [0, 1], each feature name f into a value fI ∈ Df , and assigns truth values in [0, 1] to
formulas as follows:

▶ for hard constraints, (f c k)I = 1 iff the relation fI c k is true in Df , (f c k)I = 0 otherwise

▶ for soft constraints, (f c)I = c(fI) , i.e., the result of evaluating the fuzzy membership function c on the
value fI

▶ (¬ψ)I = ¬ψI , (ψ ∧ φ)I = ψI ∧ φI , (ψ ∨ φ)I = ψI ∨ φI , (ψ → φ)I = ψI ⇒ φI and
(w1 · ψ1 + . . . + wn · ψn)

I =
∑

i wi · ψI
i

▶ I |= ⟨ψ, n⟩ iff ψI ≥ n.

Proposition (Reasoning)
Reasoning problems in P(N) can be solved via MILP, as rs, ls, tri are MILP representable.

Example: Matchmaking

▶ Suppose we have a buyer and a seller (agents)

▶ A car seller sells a sedan car
▶ A buyer is looking for a second hand passenger car
▶ Both the buyer as well as the seller have preferences

(restrictions)
▶ There is some background knowledge

▶ The objective is determine “an optimal” (Pareto optimal)
agreement among the two

Matchmaking Example: the Background Knowledge

1. A sedan is a passenger car

2. A satellite alarm system is an alarm system

3. The navigator pack is a satellite alarm system with a GPS
system

4. The Insurance Plus package is a driver insurance together with
a theft insurance

5. The car colours are black or grey

Matchmaking Example: Buyer’s preferences

1. He does not want to pay more than 26000 euro (buyer
reservation value)

2. He wants an alarm system in the car and he is completely
satisfied with paying no more than 23000 euro, but he can go up
to 26000 euro to a lesser degree of satisfaction

3. He wants a driver insurance and either a theft insurance or a fire
insurance

4. He wants air conditioning and the external colour should be
either black or grey

5. Preferably the price is no more than 22000 euro, but he can go
up to 24000 euro to a lesser degree of satisfaction

6. The kilometer warranty is preferrably at least 140000, but he
may go down to 160000 to a lesser degree of satisfaction

7. The weights of the preferences 2-6 are, (0.1, 0.2, 0.1, 0.2, 0.4).
The higher the value the more important is the preference

Matchmaking Example: Seller’s preferences

1. He wants to sell no less than 24000 euro (seller reservation
value)

2. If there is an navigator pack system in the car then he is
completely satisfied with selling no less than 26000 euro, but he
can go down to 24000 euro to a lesser degree of satisfaction

3. Preferably the seller sells the Insurance Plus package

4. The kilometer warranty is preferrably at most 150000, but he
may go up to 170000 to a lesser degree of satisfaction

5. If the color is black then the car has air conditioning

6. The weights of the preferences 2-5 are, (0.3, 0.1, 0.4, 0.2). The
higher the value the more important is the preference

Matchmaking Example: Encoding

T =

Sedan→ PassengerCar
ExternalColorBlack→ ¬ExternalColorGray
SatelliteAlarm→ AlarmSystem
InsurancePlus↔ DriverInsurance ∧ TheftInsurance
NavigatorPack↔ SatelliteAlarm ∧ GPS_system

Buyer’s request:
β = PassengerCar ∧ (price ≤ 26000)
β1 = AlarmSystem⇒ (price , ls(23000, 26000))
β2 = DriverInsurance ∧ (TheftInsurance ∨ FireInsurance)
β3 = AirConditioning ∧ (ExternalColorBlack ∨ ExternalColorGray)
β4 = (price , ls(22000, 24000))
β5 = (km_warranty , rs(140000, 160000))
B = 0.1 · β1 + 0.2 · β2 + 0.1 · β3 + 0.2 · β4 + 0.2 · β5

Seller’s request:
σ = Sedan ∧ (price ≥ 24000)
σ1 = NavigatorPack ∧ (price , rs(24000, 26000))
σ2 = InsurancePlus
σ3 = (km_warranty , ls(150000, 170000))
σ4 = ExternalColorBlack ∧ AirConditioning
S = 0.3 · σ1 + 0.1 · σ2 + 0.4 · σ3 + 0.2 · σ4

Let
KB = T ∪ {β, σ} ∪ {buy↔ B, sell↔ S}

Pareto optimal solution:
bsd(KB, buy ∧Π sell) = 0.651

In particular, the final agreement is:

SedanĪ = 1.0, PassengerCarĪ = 1.0, InsurancePlusĪ = 1.0, AlarmSystemĪ = 1.0,
DriverInsuranceĪ = 1.0, AirConditioningĪ = 1.0, NavigatorPackĪ = 1.0,
(km_warranty ls(150000, 170000))Ī = 0.5, i.e. km_warrantyĪ = 160000,
(price, ls(23000, 26000))Ī = 0.33, i.e. priceĪ = 24000,
TheftInsuranceĪ = 1.0, FireInsuranceĪ = 1.0, ExternalColorBlackĪ = 1.0, ExternalColorGrayĪ = 0.0.

Uncertainity & Fuzzyness in Semantic Web Languages

RDFS

A Probabilistic RDF

▶ Probabilistic generalization of RDF
▶ Terminological probabilistic knowledge about classes
▶ Assertional probabilistic knowledge about properties of

individuals
▶ Assertional probabilistic inference for acyclic probabilistic

RDF theories, which is based on logical entailment in
probabilistic logic, coupled with a local probabilistic
semantics

Example of probabilistic RDF schema tuples

Probabilistic RDF schema tuples

▶ Non-probabilistic triples:

(i, type, c)
(p1, sp, p2)
(p, range, c)
(p, dom, c)

▶ i ∈ UB individual (URI reference or blank node)
▶ p,pi properties
▶ c class

▶ Probabilistic schema quadruples: (c, sc,C, µ)

▶ c class
▶ C set of classes
▶ µ : C → [0,1] with

▶
∑

c∈C µ(c) = 1
▶ If (c, sc,C1, µ1) and (c, sc,C2, µ2) with C1 ̸= C2 then

C1 ∩ C2 = ∅

Example of probabilistic RDF instance tuples

Probabilistic RDF instance tuples

▶ Probabilistic instance quadruples:

(i, p,V , µ)
(i, type,C, δ)

▶ i individual, p property
▶ V ⊆ UBL, set of individuals or literals
▶ µ distribution over V , µ : V → [0,1] with

▶
∑

v∈V µ(v) ≤ 1
▶ If (i, p,V1, µ1), (i, p,V2, µ2), with V1 ̸= V2 then V1 ∩ V2 = ∅

▶ C set of classes
▶ δ : C → [0,1] with

▶
∑

c∈C δ(c) ≤ 1
▶ If (i, type,C1, δ1), (i, type,C2, δ2), then V1 = V2 and δ1 = δ2

▶ pRDF theory: a pair (S,R), where S is a set of pRDF schema tuples
and R is a set of pRDF instance tuples

Semantics (excerpt)

▶ p-path P: for property p, P is a sequence of n tuples (si , pi , vi , γi),
where

▶ for all i , ∃ (si ,pi ,V , µ) s.t. vi ∈ V , µ(vi) = γi
▶ for all i , (pi , sp∗,p) (sp∗ is transitive closure of sp)
▶ for all i ≤ n − 1, vi = si+1

▶ A pRDF instance is acyclic if for all properties p, there are no cyclic
p-paths in it

▶ World: A world w is a set of triples (s, p, v) such that either

▶ s is an individual, p is a property and v is an individual or
literal, or

▶ s is an individual, p is type and v is a class
▶ pRDF interpretation: I : W → [0, 1] with

∑
w∈W I(w) = 1

▶ Satisfaction:

▶ I |= (s,p,V , µ) iff ∀v ∈ V , µ(v) ≤∑
(s,p,v)∈W I((s,p, v))

▶ I |= (S,R) iff
▶ I satisfies all tuples in R
▶ for all p-paths (si , pi , vi , γi)i∈[1...n] in (S,R),
⊗iγi ≤

∑
(si ,pi ,vi)∈W I((si , pi , vi))

▶ ⊗ is a t-norm
▶ Entailment: (S,R) |= (s, p,V , µ) iff any model of (S,R) is a model of

(s, p,V , µ)
▶ Atomic queries: (?s, p, v , γ), (s, ?p, v , γ), (s, p, v , ?γ)
▶ Conjunctive queries: q1 ∧ q2 ∧ ... ∧ qn, qi atomic queries

Fuzzy RDF

▶ Statement (triples) may have attached a degree in [0,1]:
for n ∈ [0,1]

⟨(subject ,predicate,object),n⟩

▶ Meaning: the degree of truth of the statement is at least n
▶ For instance,

⟨(o1, IsAbout , snoopy),0.8⟩

Fuzzy RDF Syntax

▶ Fuzzy RDF triple (or Fuzzy RDF atom):

⟨τ,n⟩ ∈ (UBL× U× UBL)× [0,1]

▶ s ∈ UBL is the subject
▶ p ∈ U is the predicate
▶ o ∈ UBL is the object
▶ n ∈ (0,1] is the degree of truth

▶ Example:
⟨(audiTT, type,SportCar),0.8⟩

Fuzzy RDF Semantics

▶ Fuzzy RDF interpretation I over a vocabulary V is a tuple

I = ⟨∆R,∆P ,∆C ,∆L,P[[·]],C[[·]], ·I⟩ ,

where
▶ ∆R ,∆P ,∆C ,∆L are the interpretations domains of I
▶ P[[·]],C[[·]], ·I are the interpretation functions of I

I = ⟨∆R,∆P ,∆C ,∆L,P[[·]],C[[·]], ·I⟩

1. ∆R is a nonempty set of resources, called the domain or universe of I;

2. ∆P is a set of property names (not necessarily disjoint from ∆R);

3. ∆C ⊆ ∆R is a distinguished subset of ∆R identifying if a resource
denotes a class of resources;

4. ∆L ⊆ ∆R , the set of literal values, ∆L contains all plain literals in L ∩ V ;

5. P[[·]] maps each property name p ∈ ∆P into a partial function
P[[p]] : ∆R ×∆R → [0, 1], i.e. assigns a degree to each pair of
resources, denoting the degree of being the pair an instance of the
property p;

6. C[[·]] maps each class c ∈ ∆C into a partial function C[[c]] : ∆R → [0, 1],
i.e. assigns a degree to every resource, denoting the degree of being
the resource an instance of the class c;

7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P , i.e. assigns a
resource or a property name to each element of UL in V , and such that
·I is the identity for plain literals and assigns an element in ∆R to
elements in L;

8. ·I maps each variable x ∈ B into a value xI ∈ ∆R , i.e. assigns a
resource to each variable in B.

Models

Let G be a graph over ρdf.
▶ An interpretation I is a model of G under ρdf, denoted
I |= G, iff
▶ I is an interpretation over the vocabulary ρdf ∪ universe(G)
▶ I satisfies the following conditions:

Simple:

1. for each ⟨(s, p, o), n⟩ ∈ G, pI ∈ ∆P and
P[[pI]](sI , oI) ≥ n;

Subproperty:

1. P[[spI]] is transitive over ∆P ;
2. if P[[spI]](p, q) is defined then p, q ∈ ∆P and

P[[spI]](p, q) = inf
(x,y)∈∆R×∆R

P[[p]](x , y) =⇒ P[[q]](x , y) ;

Models (cont.)
Subclass:

1. P[[scI]] is transitive over ∆C ;
2. if P[[scI]](c, d) is defined then c, d ∈ ∆C and

P[[scI]](c, d) = inf
x∈∆R

C[[c]](x) =⇒ C[[d]](x) ;

Typing I:
1. C[[c]](x) = P[[typeI]](x , c);
2. if P[[domI]](p, c) is defined then

P[[domI]](p, c) = inf
(x,y)∈∆R×∆R

P[[p]](x , y) =⇒ C[[c]](x) ;

3. if P[[rangeI]](p, c) is defined then

P[[rangeI]](p, c) = inf
(x,y)∈∆R×∆R

P[[p]](x , y) =⇒ C[[c]](y) ;

Typing II:
1. For each e ∈ ρdf, eI ∈ ∆P
2. if P[[domI]](p, c) is defined then p ∈ ∆P and c ∈ ∆C
3. if P[[rangeI]](p, c) is defined then p ∈ ∆P and c ∈ ∆C
4. if P[[typeI]](x , c) is defined then c ∈ ∆C

Models (cont.)
Note:

▶ In the crisp case, if c is a sub-class of d then we impose that C[[c]] ⊆ C[[d]]
▶ This may be seen as the formula

∀x .c(x) =⇒ d(x) ,

▶ The fuzzyfication is

P[[scI]](c, d) = inf
x∈∆R

C[[c]](x) =⇒ C[[d]](x) ;

▶ Similarly, e.g., “property p has domain c” may be seen as the formula

∀x∀y .p(x , y) =⇒ c(x) ,

▶ The fuzzyfication is

P[[domI]](p, c) = inf
(x,y)∈∆R×∆R

P[[p]](x , y) =⇒ C[[c]](x) .

▶ G entails H under ρdf, denoted G |= H, iff

▶ every model under ρdf of G is also a model under ρdf of H

Example & Model

G = {⟨(audiTT , type, SportsCar), 0.8⟩, ⟨(SportsCar, sc, PassengerCar), 0.9⟩} t-norm: Product

I = ⟨∆R ,∆P ,∆C ,∆L, P[[·]],C[[·]], ·I⟩

∆R = {audiTT , SportsCar, PassengerCar}
∆P = {type, sc}
∆C = {SportsCar, PassengerCar}

P[[type]] = {⟨⟨audiTT , SportsCar⟩, 0.8⟩, ⟨⟨audiTT , PassengerCar⟩, 0.72⟩}
P[[sc]] = {⟨⟨SportsCar, PassengerCar⟩, 0.9⟩}

C[[SportsCar]] = {⟨audiTT , 0.8⟩}
C[[PassengerCar]] = {⟨audiTT , 0.72⟩}

tI = t for all t ∈ UL

I |= G I is a model of G

Example (Entailment)

G = {⟨(audiTT , type, SportsCar), 0.8⟩, ⟨(SportsCar, sc, PassengerCar), 0.9⟩} t-norm: Product

I = ⟨∆R ,∆P ,∆C ,∆L, P[[·]],C[[·]], ·I⟩

∆R = {audiTT , SportsCar, PassengerCar}
∆P = {type, sc}
∆C = {SportsCar, PassengerCar}

P[[type]] = {⟨⟨audiTT , SportsCar⟩, 0.8⟩, ⟨⟨audiTT , PassengerCar⟩, 0.72⟩}
P[[sc]] = {⟨⟨SportsCar, PassengerCar⟩, 0.9⟩}

C[[SportsCar]] = {⟨audiTT , 0.8⟩}
C[[PassengerCar]] = {⟨audiTT , 0.72⟩}

tI = t for all t ∈ UL

G |= ⟨(audiTT , type, PassengerCar), 0.72⟩ In all models I of G, P[[type]](audiTT , PassengerCar) = 0.72

Deduction System for fuzzy RDF

1. Simple:

(a) G
G′ for a map µ : G′ → G (b) G

G′ for G′ ⊆ G

2. Subproperty:

(a) ⟨(A, sp, B), n⟩,⟨(B, sp,C),m⟩
⟨(A, sp,C), n ⊗ m⟩ (b) ⟨(A, sp, B), n⟩,⟨(X , A, Y),m⟩

⟨(X , B, Y), n ⊗ m⟩
3. Subclass:

(a) ⟨(A, sc, B), n⟩,⟨(B, sc,C),m⟩
⟨(A, sc,C), n ⊗ m⟩ (b) ⟨(A, sc, B), n⟩,⟨(X , type, A),m⟩

⟨(X , type, B), n ⊗ m⟩
4. Typing:

(a) ⟨(A, dom, B), n⟩,⟨(X , A, Y),m⟩
⟨(X , type, B), n ⊗ m⟩ (b) ⟨(A, range, B), n⟩,⟨(X , A, Y),m⟩

⟨(Y , type, B), n ⊗ m⟩
5. Implicit Typing:

(a) ⟨(A, dom, B), n⟩,⟨(C, sp, A),m⟩,⟨(X ,C, Y), r⟩
⟨(X , type, B), n ⊗ m ⊗ r⟩

(b) ⟨(A, range, B), n⟩,⟨(C, sp, A),m⟩,⟨(X ,C, Y), r⟩
⟨(Y , type, B), n ⊗ m ⊗ r⟩

Deduction System for Fuzzy RDF (cont.)

▶ Notion of proof (as for crisp RDF)):
▶ Let G and H be graphs
▶ Then G ⊢ H iff there is a sequence of graphs P1, . . . ,Pk

with P1 = G and Pk = H, and for each j (2 ≤ j ≤ k) one of
the following holds:

1. there exists a map µ : Pj → Pj−1 (rule (1a));
2. Pj ⊆ Pj−1 (rule (1b));
3. there is an instantiation R

R′ of one of the rules (2)–(5), such
that R ⊆ Pj−1 and Pj = Pj−1 ∪ R′.

▶ The sequence of rules used at each step (plus its
instantiation or map), is called a proof of H from G.

Proposition (Soundness and completeness)
The fuzzy RDF proof system ⊢ is sound and complete for |=,
that is, G ⊢ H iff G |= H.

Example (Proof)

G = {⟨(audiTT , type, SportsCar), 0.8⟩, ⟨(SportsCar, sc, PassengerCar), 0.9⟩} t-norm: Product

Let us proof that
G |= ⟨(audiTT , type, PassengerCar), 0.72⟩

G ⊢ ⟨(audiTT , type, SportsCar), 0.8⟩, (1) Rule Simple (b)
G ⊢ ⟨(SportsCar, sc, PassengerCar), 0.9⟩ (2) Rule Simple (b)
G ⊢ ⟨(audiTT , type, PassengerCar), 0.72⟩ (3) Rule SubClass (b) applied to (1) + (2) using product t-norm

Fuzzy RDFS Query Answering
▶ Conjunctive query: extends a crisp RDF query and is of

the form

⟨q(x), s⟩ ← ∃y.⟨τ1, s1⟩, . . . , ⟨τn, sn⟩,
s = f (s1, . . . , sn,p1(z1), . . . ,ph(zh))

where
▶ τi triples involving literals and variables in x,y

▶ zi are tuples of literals or variables in x or y

▶ pj(t) ∈ [0,1]

▶ f is a scoring function f : ([0, 1])n+h → [0,1]

▶ Example:

⟨q(x), s⟩ ← ⟨(x , type,SportCar), s1⟩, (x ,hasPrice, y), s = s1·cheap(y)

where e.g. cheap(y) = ls(0,10000,12000)(y), has
intended meaning to “retrieve all cheap sports car"

Fuzzy RDF Query Answering (cont.)

▶ We will also write a query as
⟨q(x), s⟩ ← ∃y.⟨φ(x, y), s⟩ ,

where
▶ φ(x, y) is ⟨τ1, s1⟩, . . . , ⟨τn, sn⟩, s = f (s, p1(z1), . . . , ph(zh))

▶ s = ⟨s1, . . . , sn⟩
▶ Furthermore, q(x) is called the head of the query, while ∃y.φ(x, y) is is called the body of the query
▶ Finally, a disjunctive query (or, union of conjunctive queries) q is, as usual, a finite set of conjunctive queries

in which all the rules have the same head
▶ For instance, the disjunctive query

⟨q(x), s⟩ ← ⟨(x, type, SportCar), s1⟩, (x, hasPrice, y), s = s1 · cheap(y)

⟨q(x), s⟩ ← ⟨(x, type, PassengerCar), s1⟩, s = s1

has intended meaning to retrieve all sports cars or passenger cars

Fuzzy RDF Query Answering (cont.)
▶ Consider a fuzzy graph G, a query ⟨q(x), s⟩ ← ∃y.⟨φ(x, y), s⟩, and a vector t of

terms in UL and s ∈ [0, 1]

▶ We say that ⟨q(t), s⟩ is entailed by G, denoted G |= ⟨q(t), s⟩, iff

▶ in any model I of G, there is a vector t′ of terms in UL, a vector s of scores
in [0, 1] such that I is a model of ⟨φ(t, t′), s⟩ (the scoring atom is satisfied
iff s is the value of the evaluation of the score combination function)

▶ For a disjunctive query q = {q1, . . . , qm}, we say that ⟨q(t), s⟩ is entailed by G,
denoted G |= ⟨q(t), s⟩, iff G |= ⟨qi (t), s⟩ for some qi ∈ q

▶ We say that s is tight iff s = sup{s′ | G |= ⟨q(t), s′⟩}
▶ If G |= ⟨q(t), s⟩ and s is tight then ⟨t, s⟩ is called an answer to q
▶ The answer set of q w.r.t. G is defined as

ans(G,q) = {⟨t, s⟩ | G |= ⟨q(t), s⟩, s is tight}

Top-k Retrieval: Given a fuzzy graph G, and a disjunctive query q, retrieve k answers
⟨t, s⟩ with maximal scores and rank them in decreasing order relative
to the score s, denoted

ansk (G,q) = Topk ans(G,q) .

Fuzzy RDF Query Answering (cont.)

▶ A simple query answering procedure is the following:
▶ Compute the closure of a graph off-line
▶ Store the fuzzy RDF triples into a relational database

supporting Top-k retrieval (e.g., RankSQL, Postgres)
▶ Translate the fuzzy query into a top-k SQL statement
▶ Execute the SQL statement over the relational database

▶ In practice, some care should be in place due to the large
size of data: ≥ 109 triples

▶ To date, no systems exists

Example

G =

⟨(o1, IsAbout , snoopy), 0.8⟩ ⟨(o2, IsAbout ,woodstock), 0.9⟩
(snoopy , type, dog) (woodstock , type, bird)
⟨(Bird , sc,SmallAnimal), 0.7⟩ ⟨(Dog, sc,SmallAnimal), 0.4⟩
(dog, sc,Animal) (bird , sc,Animal)
(SmallAnimal, sc,Animal)

Consider the query

⟨q(x), s⟩ ← ⟨(x , IsAbout , y), s1⟩, ⟨(y , type,SmallAnimal), s2⟩, s = s1 · s2

Then (under any t-norm)

ans(G, q) = {⟨o1, 0.32⟩, ⟨o2, 0.63⟩}, ans1(G, q) = {⟨o2, 0.63⟩}

Description Logics

Probabilistic DLs

▶ Terminological probabilistic knowledge about concepts and roles
▶ Assertional probabilistic knowledge about instances of concepts

and roles (for combining assertional and terminological
probabilistic knowledge)

▶ Terminological and assertional probabilistic inference problems
reduced to sequences of linear optimization problems

▶ Directly extends probabilistic propositional logic
▶ In place of atoms we have now concepts as basic events
▶ Finite nonempty set of basic events Φ= {C1, . . . ,Cn},

where Ci concept
▶ Event φ: Boolean combination of basic events

▶ Logical constraint φ ⊑ ψ: “φ is subsumed by ψ”
▶ Conditional constraints:

▶ (ψ|φ)[l ,u]: informally encodes that
“generally, if an individual is an instance of φ, then it is an
instance of ψ with a probability in [l, u]”

▶ a : (ψ|φ)[l ,u]: informally encodes that
“if individual a is an instance of φ, then a is an instance of ψ
with a probability in [l, u]”

Example

Eagle ⊑ Bird

(Fly | Bird)[0.95,1]

KB||=tight(Fly | Bird)[0.95,1]

KB||=tight(Fly | Eagle)[0,1.0]

Reasoning in Probabilistic DLs
▶ Similar to probabilistic propositional logic via MILP
▶ A world I is a finite set of basic events C ∈ Φ such that
{C(a) | C ∈ I} ∪ {¬C(a) | C ∈ Φ \ I} is satisfiable, where a is a new
individual

▶ Informally, every world I represents an individual a that is fully specified
on a in the sense that I belongs (resp., does not belong) to every basic
event C ∈ I (resp., C ∈ Φ \ I)

▶ We denote by IΦ the set of all worlds relative to Φ

▶ Notice that IΦ is finite, since Φ is finite
▶ A world I satisfies a classical knowledge base K , or I is a model of K,

denoted I |= K, iff K ∪ {C(a) | C ∈ I} ∪ {¬C(a) | C ∈ Φ \ I} is
satisfiable, where a is a new individual

▶ A world I satisfies a basic event C ∈ Φ, or I is a model of C, denoted
I |= C iff C ∈ I

▶ The notion of a world I satisfies an event C, or I is a model of C,
denoted I |= C, is defined as follows:
▶ if C ∈ Φ is a basic event then I |= C iff C ∈ I
▶ I |= ¬C iff I ̸|= C
▶ I |= C ⊓ D iff I |= C and I |= D

Proposition
Let K be a classical knowledge base, and let P be a finite set of
conditional constraints. Let R = {I ∈ IΦ | I |= K}. Then, K ∪ P is
satisfiable iff the system of linear constraints LC below over the
variables yr , r ∈ R is solvable:∑

r∈R, r |=¬ψ∧φ
−l yr +

∑
r∈R, r |=ψ∧φ

(1− l) yr ≥ 0 (∀(ψ|φ)[l ,u]∈P), l > 0

∑
r∈R, r |=¬ψ∧φ

u yr +
∑

r∈R, r |=ψ∧φ
(u − 1) yr ≥ 0 (∀(ψ|φ)[l ,u]∈P),u < 1∑

r∈R
yr = 1

yr ≥ 0 (for all r ∈R)

▶ In order to compute the tight bounds, just

minimize (resp., maximize)
∑

r∈R, r |= β∧α
yr subject to LC

Fuzzy Descirption Logics

▶ In classical DLs, a concept C is interpreted by an
interpretation I as a set of individuals

▶ In fuzzy DLs, a concept C is interpreted by I as a fuzzy set
of individuals

▶ Each individual is instance of a concept to a degree in [0,1]
▶ Each pair of individuals is instance of a role to a degree in

[0,1]

For a degree n in L or Ln

▶ ⟨a:C,n⟩ states that a is an instance of concept/class C with
degree at least n

▶ ⟨C1 ⊑ C2,n⟩ states that class C1 is ausbclass of C2 to
degree n

Fuzzy OWL 2

▶ Fuzzy OWL 2 added value:
▶ fuzzy concrete domains (e.g., young)

▶ modifiers (e.g., very young)
▶ other extensions:

▶ aggregation functions: weighted sum, OWA, fuzzy integrals

▶ fuzzy rough sets

▶ fuzzy spatial relations

▶ fuzzy numbers, ...

Fuzzy Concrete Domains

▶ E.g., Small ,Young,High,etc. with explicit membership
function

▶ Representation of Young Person:

Minor = Person ⊓ ∃hasAge. ≤18
YoungPerson = Person ⊓ ∃hasAge.ls(10,30)

▶ Representation of Heavy Rain:

HeavyRain = Rain ⊓ ∃hasPrecipitationRate.rs(5,7.5)

Fuzzy Modifiers

▶ Very , moreOrLess, slightly , etc.
▶ Representation of Sport Car

SportsCar = Car ⊓ ∃speed .very(rs(80,250))

▶ Representation of Very Heavy Rain

VeryHeavyRain = Rain⊓∃hasPrecipitationRate.very(rs(5,7.5)) .

Aggregation Operators

▶ Aggregation operators: aggregate concepts, using functions
such as the mean, median, weighted sum operators, etc.

▶ Allows to express the concept

0.3 · ExpensiveHotel + 0.7 · LuxuriousHotel ⊑ GoodHotel

▶ a good hotel is the weighted sum of being an expensive
and luxurious hotel

▶ Aggregated concepts are popular in robotics:
▶ to recognise complex objects from atomic ones

Semantics

The semantics is an immediate consequence of the First-Order-Logic translation of DLs expressions

Interpretation:
I = ∆I

CI : ∆I → [0, 1]
RI : ∆I × ∆I → [0, 1]

⊗ = t-norm
⊕ = s-norm
⊖ = negation
→ = implication

Concepts:

Syntax Semantics
C,D −→ ⊤ | ⊤I (x) = 1

⊥ | ⊥I (x) = 0
A | AI (x) ∈ [0, 1]

C ⊓ D | (C1 ⊓ C2)
I (x) = C1

I (x)⊗ C2
I (x)

C ⊔ D | (C1 ⊔ C2)
I (x) = C1

I (x)⊕ C2
I (x)

¬C | (¬C)I (x) = ⊖CI (x)
∃R.C | (∃R.C)I (x) = supy∈∆I RI (x, y)⊗ CI (y)

∀R.C (∀R.C)I (x) = infy∈∆I RI (x, y)→ CI (y)}

Assertions: ⟨a:C, r⟩, I |= ⟨a:C, r⟩ iff CI (aI) ≥ r (similarly for roles)
▶ individual a is instance of concept C at least to degree r , r ∈ [0, 1] ∩ Q

Inclusion axioms: ⟨C ⊑ D, r⟩,
▶ I |= ⟨C ⊑ D, r⟩ iff infx∈∆I CI (x)→ DI (x) ≥ r

Main Inference Problems

Graded entailment: Check if DL axiom α is entailed to degree at least r
▶ KB |= ⟨α, r⟩ ?

BED: Best Entailment Degree problem
▶ bed(KB, α) = sup{r | KB |= ⟨α, r⟩}

BSD: Best Satisfiability Degree problem
▶ bsd(KB,C) = supI|=KB{CI(aI)}, for new individual a

Top-k retrieval: Retrieve the top-k individuals that instantiate C w.r.t. best
truth value bound

▶ ansk (KB,C) = Topk{⟨a, r⟩ | r = bed(KB, a:C)}

Number Restrictions, Inverse and Transitive roles

▶ The semantics of the concept (≥ n R) is:

∃y1, . . . , yn.
n∧

i=1

R(x, yi) ∧
∧

1≤i<j≤n

yi ̸= yj .

▶ The semantics of the concept (≤ n R) is:

(≤ n R)I (x) = ∀y1, . . . , yn+1.
n+1∧
i=1

R(x, yi)→
∨

1≤i<j≤n+1

yi = yj .

▶ Note: (≥ 1 R) ≡ ∃R.⊤
▶ For inverse roles we have for all x, y ∈ ∆I

RI (x, y) = RI (y, x)

▶ For transitive roles R we impose: for all x, y ∈ ∆I

RI (x, y) ≥ sup
z∈∆I

min(RI (x, z),RI (z, y))

Fuzzy SHOIN (D)

Concepts:
Syntax Semantics

C,D −→ ⊤ | ⊤(x)
⊥ | ⊥ (x)

A | A(x)
(C ⊓ D) | C1(x) ∧ C2(x)
(C ⊔ D) | C1(x) ∨ C2(x)

(¬C) | ¬C(x)
(∃R.C) | ∃x R(x, y) ∧ C(y)
(∀R.C) | ∀x R(x, y)→ C(y)
{a} | x = a

(≥ n R) | ∃y1, . . . , yn.
∧n

i=1 R(x, yi) ∧
∧

1≤i<j≤n yi ̸= yj

(≤ n R) | ∀y1, . . . , yn+1.
∧n+1

i=1 R(x, yi)→
∨

1≤i<j≤n+1 yi = yj
FCC | µFCC (x)

M(C) | µM (C(x))∑
i wi · Ci w1 · C1(x) + · · ·wn · Cn(x) (

∑
i wi = 1)

R −→ P | P(x, y)
P− | P(y, x)

Assertions:
Syntax Semantics

α −→ ⟨a:C, r⟩ | r → C(a)
⟨(a, b):R, r⟩ r → R(a, b)

Axioms:

Syntax Semantics
τ −→ ⟨C ⊑ D, r⟩ | ∀x r → (C(x)→ D(x)), where→ is r-implication

fun(R) | ∀x∀y∀z R(x, y) ∧ R(x, z)→ y = z
trans(R) (∃z R(x, z) ∧ R(z, y))→ R(x, y)

Example (Graded Entailment)

audi_tt mg ferrari_enzo

Car speed
audi_tt 243
mg ≤ 170
ferrari_enzo ≥ 350

SportsCar = Car ⊓ ∃hasSpeed.very(High)

KB |= ⟨ferrari_enzo:SportsCar, 1⟩
KB |= ⟨audi_tt :SportsCar, 0.92⟩
KB |= ⟨mg:¬SportsCar, 0.72⟩

Example (Graded Subsumption)

Minor = Person ⊓ ∃hasAge. ≤18

YoungPerson = Person ⊓ ∃hasAge.Young

KB |= ⟨Minor ⊑ YoungPerson, 0.6⟩

Note: without an explicit membership function of Young, this inference cannot
be drawn

Example (Simplified Negotiation)

▶ a car seller sells an Audi TT for 31500e, as from the catalog price.
▶ a buyer is looking for a sports-car, but wants to to pay not more than around 30000e
▶ classical DLs: the problem relies on the crisp conditions on price

▶ more fine grained approach: to consider prices as fuzzy sets (as usual in negotiation)
▶ seller may consider optimal to sell above 31500e, but can go down to 30500e
▶ the buyer prefers to spend less than 30000e, but can go up to 32000e

AudiTT = SportsCar ⊓ ∃hasPrice.R(x ; 30500, 31500)
Query = SportsCar ⊓ ∃hasPrice.L(x ; 30000, 32000)

▶ highest degree to which the concept
C = AudiTT ⊓ Query
is satisfiable is 0.75 (the possibility that the Audi TT and the query matches is 0.75)

▶ the car may be sold at 31250e

Reasoning in Fuzzy ALC, under Zadeh Semantics

▶ Applies technique based on Mixed Integer Programming
(MILP) for fuzzy propositional logic to ALC calculus

▶ For each concept assertion α of the form a:C, we use
variable xα, which holds the degree of truth of α

▶ It can be shown that

bed(KB, (a, b):R) = bed(KB ∪ {⟨b:B, 1⟩}, a:∃R.B)
bed(KB,C ⊑ D) = min x such that KB ∪ {⟨b:C ⊓ ¬D, 1− x⟩} satisfiable
bed(KB, a:C) = min x such that KB ∪ {⟨a:¬C, 1− x⟩} satisfiable
bsd(KB,C) = min−x such that KB ∪ {⟨b:C, x⟩} satisfiable

where b is a new individual and B is a new concept

Satisfiability Testing

▶ The notion of completion forest F is similar to the case of ALC
▶ F contains a root node ai for each individual ai occurring in
A

▶ F contains an edge ⟨a,b⟩ for each ⟨(a,b):R,n⟩ ∈ A
▶ for each ⟨a:C,n⟩ ∈ A, we add both C to L(a) and xa:C ≥ n

to CF
▶ for each ⟨(a,b):R,n⟩ ∈ A, we add both R to L(⟨a,b⟩) and

x(a,b):R ≥ n to CF
▶ The notion of blocking is as for crisp ALC
▶ F is then expanded by repeatedly applying the rules described

below

▶ The completion-forest is complete when none of the rules are
applicable

▶ Then, the bMILP problem on CF is solved

OR-based Fuzzy ALC Tableau rules with GCI’s
(Zadeh semantics)

Rule Description
(var) For variable xv :C add xv :C ∈ [0, 1] to CF . For variable x(v,w):R , add x(v,w):R ∈ [0, 1] to CF

(Ā) if ¬A ∈ L(v) then add xv :A = 1− xv :¬A to CF

(⊥) If ⊥ ∈ L(v) then add xv :⊥ = 0 to CF

(⊤) If ⊤ ∈ L(v) then add xv :⊤ = 1 to CF

(⊓) if C1 ⊓ C2 ∈ L(v), v is not indirectly blocked
then L(v)→ L(v) ∪ {C1,C2}, and add xv :C1

⊗ xv :C2
≥ xv :C1 ⊓ C2

to CF

(⊔) if C1 ⊔ C2 ∈ L(v), v is not indirectly blocked
then L(v)→ L(v) ∪ {C1,C2}, and add xv :C1

⊕ xv :C2
≥ xv :C1 ⊔ C2

to CF

(∀) if ∀R.C ∈ L(v), v is not indirectly blocked
then L(w)→ L(w) ∪ {C}, and add xw :C ≥ xv :∀R.C ⊗ x(v,w):R to CF

(∃) if ∃R.C ∈ L(v), v is not blocked
then create new node w with L(⟨v,w⟩) = {R} and L(w) = {C}, and add xw :C ⊗ x(v,w):R ≥ xv :∃R.C to CF

(⊑) if ⟨C ⊑ D, n⟩ ∈ T , v is not indirectly blocked
then L(v)→ L(v) ∪ {C,D}, and add xv :D ≥ xv :C ⊗ n to CF

Analytical Fuzzy Tableaux: ALC under SFL over [0,1]

▶ Works as for classical ALC on completion forests
▶ Node labels L(v) contain, rather than DL concept expressions,

expressions of the form ⟨C, n⟩
“The truth degree of being v instance of C is ≥ n"

▶ Blocking is as for classical ALC
▶ The completion forest is expanded by repeatedly applying

inference rules
▶ The completion-forest is complete when none of the rules are

applicable
▶ Additionally, we adapt the notion of clash: a clash is either

▶ ⟨⊥,n⟩ with n > 0; or
▶ a pair ⟨C,n⟩ and ⟨¬C,m⟩ with n > 1−m

▶ Eventually, the initial KB is satisfiable if there is a clash-free complete
completion forest

(⊓). If (i) ⟨C1 ⊓ C2, n⟩ ∈ L(v), (ii) {⟨C1, n⟩, ⟨C2, n⟩} ̸⊆ L(v), and
(iii) node v is not indirectly blocked, then add ⟨C1, n⟩ and
⟨C2, n⟩ to L(v).

(⊔). If (i) ⟨C1 ⊔ C2, n⟩ ∈ L(v), (ii) {⟨C1, n⟩, ⟨C2, n⟩} ∩ L(v) = ∅,
and (iii) node v is not indirectly blocked, then add some
⟨C, n⟩ ∈ {⟨C1, n⟩, ⟨C2, n⟩} to L(v).

(∀). If (i) ⟨∀R.C, n⟩ ∈ L(v), (ii) ⟨R,m⟩ ∈ L(⟨v ,w⟩) with m > 1− n,
(iii) ⟨C, n⟩ ̸∈ L(w), and (iv) node v is not indirectly blocked,
then add ⟨C, n⟩ to L(w).

(∃). If (i) ⟨∃R.C, n⟩ ∈ L(v), (ii) there is no ⟨R, n1⟩ ∈ L(⟨v ,w⟩) with
⟨C, n2⟩ ∈ L(w) such that min(n1, n2) ≥ n, and (iii) node v is
not blocked, then create a new node w , add ⟨R, n⟩ to
L(⟨v ,w⟩) and add ⟨C, n⟩ to L(w).

(⊑). If (i) ⟨⊤ ⊑ D, n⟩ ∈ T , (ii) ⟨D, n⟩ ̸∈ L(v), and (iii) node v is not
indirectly blocked, then add ⟨D, n⟩ to L(v).

Non-Deterministic Analytic Fuzzy Tableaux

▶ It’s a combination of the analogous method for fuzzy
propositional logic and analytical fuzzy tableau

▶ Works for finitely-valued fuzzy propositional logic over Ln

▶ Works also for SFL (as in place of [0,1], we may use N̄K)
▶ Rule examples:

(⊓). If (i) ⟨C1 ⊓ C2,m⟩ ∈ L(v), (ii) there are m1,m2 ∈ Ln such that m1 ⊗ m2 = m with
{⟨C1,m1⟩, ⟨C2,m2⟩} ̸⊆ L(v), and (iii) node v is not indirectly blocked, then add
⟨C1,m1⟩ and ⟨C2,m2⟩ to L(v)

(⊔). If (i) ⟨C1 ⊔ C2,m⟩ ∈ L(v), (ii) there are m1,m2 ∈ Ln such that m1 ⊕ m2 = m with
{⟨C1,m1⟩, ⟨C2,m2⟩} ∩ L(v) = ∅, and (iii) node v is not indirectly blocked, then add
some ⟨C, k⟩ ∈ {⟨C1,m1⟩, ⟨C2,m2⟩} to L(v).

(¬). If (i) ⟨¬C,m⟩ ∈ L(v) with ⟨C,⊖m⟩ ̸∈ L(v) and (ii) node v is not indirectly blocked, then
add ⟨C,⊖m⟩ to L(v).

(∀). If (i) ⟨∀R.C,m⟩ ∈ L(v), (ii) ⟨R,m1⟩ ∈ L(⟨v,w⟩), (iii) there is m2 ∈ Ln such that
m1 → m2 ≥ m with ⟨C,m2⟩ ̸∈ L(w), and (iv) node v is not indirectly blocked, then add
⟨C,m2⟩ to L(w).

(∃). If (i) ⟨∃R.C,m⟩ ∈ L(v), (ii) there are m1,m2 ∈ Ln such that m1 ⊗ m2 = m, (iii) there is
no ⟨R,m1⟩ ∈ L(⟨v,w⟩) with ⟨C,m2⟩ ∈ L(w), and (iv) node v is not blocked, then create
a new node w , add ⟨R,m1⟩ to L(⟨v,w⟩) and add ⟨C,m2⟩ to L(w).

(⊑). If (i) ⟨C ⊑ D,m⟩ ∈ T , (ii) there are m1,m2 ∈ Ln such that m1 → m2 ≥ m, (iii)
{⟨C,m1⟩, ⟨D,m2⟩} ̸⊆ L(v), and (iv) node v is not indirectly blocked, then add ⟨C,m1⟩
and ⟨D,m2⟩ to L(v).

Reduction to Classical DLs

▶ Same principle as for the reduction for propositional fuzzy
logic

▶ Needs adaption to the DL constructs: e.g. ∃,∀ and ⊑
▶ Examples of reduction rules for SFL:

ρ(A,≥ γ) = A≥γ
ρ(C ⊓ D,≥ γ) = ρ(C,≥ γ) ⊓ ρ(D,≥ γ)
ρ(C ⊓ D,≤ γ) = ρ(C,≤ γ) ⊔ ρ(D,≤ γ)
ρ(∀R.C,≥ γ) = ∀ρ(R, > 1− γ).ρ(C,≥ γ)
ρ(∀R.C,≤ γ) = ∃ρ(R,≥ 1− γ).ρ(C,≤ γ)
ρ(∃R.C,≥ γ) = ∃ρ(R,≥ γ).ρ(C,≥ γ)
ρ(∃R.C,≤ γ) = ∀ρ(R, > γ).ρ(C,≤ γ)

ρ(R,≥ γ) = R≥γ
ρ(⟨a:C, γ⟩) = {a:ρ(C,≥ γ)}

ρ(⟨C ⊑ D, n⟩) =
⋃
α∈N̄K

+ ,α≤n{ρ(C,≥ α) ⊑ ρ(D,≥ α)}

Computational Complexity

The bad news...undecidability!

Proposition
Assume that fuzzy GCIs are restricted to be classical, i.e. of the form ⟨α, 1⟩ only. Then
for the following fuzzy DLs, the KB satisfiability problem is undecidable over [0, 1]:

1. ELC with classical axioms only under Łukasiewicz logic and product logic;

2. ELC under any non Gödelt-norm ⊗;

3. ELC with concept assertions of the form ⟨α = n⟩ only under any non
Gödelt-norm ⊗;

4. AL with concept implication operator→ and concept assertions of the form
⟨α = n⟩ only under any non Gödelt-norm ⊗.

5. ELC under SFL with weighted sum constructor.

Some decidability results..

Proposition
The KB satisfiability problem is decidable for

▶ SROIQ under SFL over [0, 1] and Gödel logic over Ln

▶ SROIN under Łukasiewicz logic over Ln

▶ SHI under any continuous t-norm over Ln without TBox
▶ ALC with concept implication operator→, for any continuous t-norm over [0, 1]

with acyclicTBox
▶ SHIF with concept implication operator→, for Łukasiewicz logic over [0, 1] with

acyclicTBox
▶ SI under any continuous t-norm over [0, 1] without TBox

Fuzzy DLs Query Answering

▶ Conjunctive query: similar to fuzzy RDFS CQs:

⟨q(x), s⟩ ← ∃y.⟨τ1, s1⟩, . . . , ⟨τn, sn⟩,
s = f (s1, . . . , sn,p1(z1), . . . ,ph(zh))

where
▶ τ1, . . . , τn are expressions A(z) or R(z, z ′), where A is a

concept name, R is a role name, z, z ′ are individuals or
variables in x or y

▶ Example:

⟨q(x), s⟩ ← ⟨SportCar(x), s1⟩,hasPrice(x , y), s = s1·cheap(y)

where e.g. cheap(y) = ls(10000,12000)(y), has intended
meaning to retrieve all cheap sports car.

Top-k retrieval in tractable DLs: the case of
DL-Lite/DLR-Lite

▶ DL-Lite/DLR-Lite: a simple, but interesting DLs

▶ Captures important subset of UML/ER diagrams

▶ Computationally tractable DL to query large databases

▶ Sub-linear, i.e. LOGSpace in data complexity

▶ (same cost as for SQL)

▶ Good for very large database tables, with limited declarative
schema design

▶ For a CQ query answering procedure,
see [Straccia, 2013, Straccia, 2012]

▶ Can be obtained also by a reduction to fuzzy Datalog

Logic Programs

Probabilistic Logic Programs

▶ There exists quite many different probabilistic LPs
▶ We illustrate Probabilistic Datalog under ICL by example
▶ Logic programs P under different “choices” (Independent

Choice Logic)
▶ Each choice along with P produces a first-order model.
▶ By placing a probability distribution over the different

choices, one then obtains a distribution over the set of
first-order models.

▶ ICL also generalizes Bayesian networks, influence
diagrams, Markov decision processes, and normal form
games.

Example
▶ The probability of rain is 0.2

Rain(x) ← hRain(x)

CRain = {hRain(T), hRain(F)}
pr(hRain(T)) = 0.2

pr(hRain(F)) = 0.8

▶ The probability of sprinkler on is 0.4

SprinklerOn(x) ← hSprinklerOn(x)

CSprinklerOn = {hSprinklerOn(T), hSprinklerOn(F)}
pr(hSprinklerOn(T)) = 0.4

pr(hSprinklerOn(F)) = 0.6

▶ If it is raining or the sprinkler is on then the grass is wet

GrassWet(x) ← Rain(x)

GrassWet(x) ← SprinklerOn(x)

▶ What is the probability that the grass is wet?

Example (cont.)

▶ We have to sum up the probabilities of each total choice that added to the program make the query true

Rain(x) ← hRain(x)

CRain = {hRain(T), hRain(F)}
pr(hRain(T)) = 0.2

pr(hRain(F)) = 0.8

SprinklerOn(x) ← hSprinklerOn(x)

CSprinklerOn = {hSprinklerOn(T), hSprinklerOn(F)}
pr(hSprinklerOn(T)) = 0.4

pr(hSprinklerOn(F)) = 0.6

GrassWet(x) ← Rain(x)

GrassWet(x) ← SprinklerOn(x)

Example (cont.)

▶ Total choice: select a ground atom from each choice

Rain(x) ← hRain(x)

CRain = {hRain(T), hRain(F)}
SprinklerOn(x) ← hSprinklerOn(x)

CSprinklerOn = {hSprinklerOn(T), hSprinklerOn(F)}
GrassWet(x) ← Rain(x)

GrassWet(x) ← SprinklerOn(x)

B Total choice
B1 hRain(T), hSprinklerOn(T)
B2 hRain(T), hSprinklerOn(F)
B3 hRain(F), hSprinklerOn(T)
B4 hRain(F), hSprinklerOn(F)

Example (cont.)

▶ Total choice B making query true: P ∪ B |= GrassWet(T)

Rain(x) ← hRain(x)

CRain = {hRain(T), hRain(F)}
SprinklerOn(x) ← hSprinklerOn(x)

CSprinklerOn = {hSprinklerOn(T), hSprinklerOn(F)}
GrassWet(x) ← Rain(x)

GrassWet(x) ← SprinklerOn(x)

B Total choice P ∪ B |= GrassWet(T)
B1 hRain(T), hSprinklerOn(T) •
B2 hRain(T), hSprinklerOn(F) •
B3 hRain(F), hSprinklerOn(T) •
B4 hRain(F), hSprinklerOn(F)

Example (cont.)

▶ Probability of total choice B: pr(B) = Πa∈Bpr(a)
▶ Condition on pr :

∑
a∈C pr(a) = 1

Rain(x) ← hRain(x)

pr(hRain(T)) = 0.2

pr(hRain(F)) = 0.8

SprinklerOn(x) ← hSprinklerOn(x)

pr(hSprinklerOn(T)) = 0.4

pr(hSprinklerOn(F)) = 0.6

GrassWet(x) ← Rain(x)

GrassWet(x) ← SprinklerOn(x)

B Total choice P ∪ B |= GrassWet(T) pr(B)
B1 hRain(T), hSprinklerOn(T) • 0.08
B2 hRain(T), hSprinklerOn(F) • 0.12
B3 hRain(F), hSprinklerOn(T) • 0.32
B4 hRain(F), hSprinklerOn(F) 0.48

1.0

Example (cont.)

▶ Probability of q: Pr(q) =
∑

B,P∪B|=q pr(B)

Rain(x) ← hRain(x)

pr(hRain(T)) = 0.2

pr(hRain(F)) = 0.8

SprinklerOn(x) ← hSprinklerOn(x)

pr(hSprinklerOn(T)) = 0.4

pr(hSprinklerOn(F)) = 0.6

GrassWet(x) ← Rain(x)

GrassWet(x) ← SprinklerOn(x)

B Total choice P ∪ B |= GrassWet(T) pr(B) Pr(GrassWet(T))
B1 hRain(T), hSprinklerOn(T) • 0.08 +
B2 hRain(T), hSprinklerOn(F) • 0.12 +
B3 hRain(F), hSprinklerOn(T) • 0.32 +
B4 hRain(F), hSprinklerOn(F) 0.48

1.0 0.52

Fuzzy Logic Programs

▶ We consider fuzzy Datalog, which extends classical
Datalog, where
▶ Truth space is [0,1] or Ln = {0, 1

n , . . . ,
n−2
n−1 , . . . ,1} (n > 2)

▶ Interpretation is a mapping I : BP → [0,1]
▶ Generalized LP rules are of the form

R(x)← ∃y.f (R1(z1), . . . ,Rk (zk), p1(z′1), . . . , ph(z′h))

▶ Meaning of rules: “take the truth-values of all Ri(zi), pj(z′j),
combine them using the truth combination function f , and
assign the result to R(x)”

▶ Facts: ground expressions of the form ⟨R(c),n⟩
▶ Meaning of facts: “the degree of truth of R(c) is at least n”

▶ Fuzzy LP: a set of facts (extensional database) and a set of
rules (intentional database). No extensional relation may
occur in the head of a rule

▶ Rules:

R(x)← ∃y.φ(x, y)

1. x are the distinguished variables;
2. s is the score variable, taking values in [0, 1];
3. y are existentially quantified variables, called non-distinguished variables;
4. φ(x, y) is f (R(z),p(z′)), where R is a vector of predicates Ri and p is a

vector of fuzzy predicates pj ;
5. z, z′ are tuples of constants in KB or variables in x or y;
6. pj is an nj -ary fuzzy predicate assigning to each nj -ary tuple cj the score

pj (cj) ∈ [0, 1];
7. f is a monotone scoring function f : [0, 1]k+h → [0, 1], which combines the

scores of the h fuzzy predicates pj (cj) with the k scores Ri (ci)

Semantics of fuzzy Datalog
▶ Like for classical Datalog

▶ P∗ is constructed as follows (as for the classical case):
1. set P∗ to the set of all ground instantiations of rules in P;
2. replace a fact p(c) in P∗ with the rule p(c)← 1
3. if atom A is not head of any rule in P∗, then add A← 0 to P∗;
4. replace several rules in P∗ having same head

A← φ1
A← φ2

...
A← φn

 with A← φ1 ∨ φ2 ∨ . . . ∨ φn .

▶ Note: in P∗ each atom A ∈ BP is head of exactly one rule
▶ Herbrand Base of P is the set BP of ground atoms
▶ Interpretation is a function I : BP → [0, 1].
▶ Model I |= P iff for all r ∈ P∗ I |= r , where I |= A← φ iff I(φ) ≤ I(A)
▶ Note:

I(f (R1(c1), . . . ,Rk (ck), p1(c
′
1), . . . , ph(c

′
h))) = f (I(R1(c1)), . . . , I(Rk (ck)), p1(c

′
1), . . . , ph(c

′
h)))

Fuzzy LP Query Answering
▶ Least model MP of P exists and is least fixed-point of

TP (I)(A) = I(φ), for all A← φ ∈ P∗

▶ M can be computed as the limit of

I0 = 0
Ii+1 = TP (Ii) .

▶ Entailment: for a ground expression ⟨q(c), s⟩, s ∈ [0, 1]

P |= ⟨q(c), s⟩ iff least model of P satisfies I(q(c)) ≥ s

▶ We say that s is tight iff s = sup{s′ | P |= ⟨q(c), s′⟩}
▶ If P |= ⟨q(c), s⟩ and s is tight then ⟨c, s⟩ is called an answer to q
▶ The answer set of q w.r.t. P is defined as

ans(P, q) = {⟨c, s⟩ | P |= ⟨q(c), s⟩, s is tight}

Top-k Retrieval: Given a fuzzy LP P, and a query q, retrieve k answers ⟨c, s⟩ with
maximal scores and rank them in decreasing order relative to the
score s, denoted

ansk (P, q) = Topk ans(P, q) .

▶ Fuzzy LPs may be tricky:

⟨p,0.1⟩
p ← (p + 1)/2

▶ In the minimal model the truth of A is 1 (requires ω TP
iterations)!

▶ There are several ways to avoid this pathological behavior:
▶ We may consider L = {0, 1

n ,
2
n . . . ,

n−1
n ,1}, n natural

number, e.g. n = 100
▶ In A← f (B1, . . . ,Bn), f is bounded, i.e. f (x1, . . . , xn) ≤ xi

Example: Soft shopping agent

▶ I may represent my preferences in Logic Programming with the rules

Pref1(x, p) ← HasPrice(x, p) ∧ LS(10000, 14000)(p)

Pref2(x) ← HasKM(x, k) ∧ LS(13000, 17000)(k)

Buy(x, p) ← 0.7 · Pref1(x, p) + 0.3 · Pref2(x)

ID MODEL PRICE KM
455 MAZDA 3 12500 10000
34 ALFA 156 12000 15000

1812 FORD FOCUS 11000 16000
.
.
.

.

.

.
.
.
.

.

.

.

▶ Problem: All tuples of the database have a score:

▶ We cannot compute the score of all tuples, then rank them. Brute force approach not feasible.
▶ Top-k problem: Determine efficiently just the top-k ranked tuples, without evaluating the score of all tuples.

E.g. top-3 tuples

ID PRICE SCORE
1812 11000 0.6
455 12500 0.56
34 12000 0.50

General top-down query procedure for Many-valued
LPs

▶ Idea: use theory of fixed-point computation of equational systems over truth
space (complete lattice or complete partial order)

▶ Assign a variable xi to an atom Ai ∈ BP
▶ Map a rule A← f (A1, . . . ,An) ∈ P∗ into the equation xA = f (xA1 , . . . , xAn)

▶ A LP P is thus mapped into the equational system
x1 = f1(x11 , . . . , x1a1

)

...
xn = fn(xn1 , . . . , xnan)

▶ fi is monotone and, thus, the system has least fixed-point, which is the limit of

y0 = 0
yi+1 = f(yi) .

where f = ⟨f1, . . . , fn⟩ and f(x) = ⟨f1(x1), . . . , fn(xn)⟩
▶ The least-fixed point is the least model of P
▶ Consequence: If top-down procedure exists for equational systems then it works

for fuzzy LPs too!

Procedure Solve(S,Q)
Input: monotonic system S = ⟨L,V , f⟩, where Q ⊆ V is the set of query variables;
Output: A set B ⊆ V , with Q ⊆ B such that the mapping v equals lfp(f) on B.

1. A : = Q, dg : = Q, in : = ∅, for all x ∈ V do v(x) = 0, exp(x) = 0
2. while A ̸= ∅ do
3. select xi ∈ A, A : = A \ {xi}, dg : = dg ∪ s(xi)
4. r : = fi (v(xi1), ..., v(xiai

))

5. if r ≻ v(xi) then v(xi) : = r , A : = A ∪ (p(xi) ∩ dg) fi
6. if not exp(xi) then exp(xi) = 1, A : = A ∪ (s(xi) \ in), in : = in ∪ s(xi) fi

od

For q(x)← ϕ ∈ P, with s(q) we denote the set of sons of q w.r.t. r , i.e. the
set of intentional predicate symbols occurring in ϕ. With p(q) we denote the
set of parents of q, i.e. the set p(q) = {pi : q ∈ s(pi , r)} (the set of predicate
symbols directly depending on q).

Top-k retrieval in LPs

▶ If the database contains a huge amount of facts, a brute
force approach fails:
▶ one cannot anymore compute the score of all tuples, rank

all of them and only then return the top-k
▶ Better solutions exists for restricted fuzzy LP languages:

Datalog + restriction on the score combination functions
appearing in the body

Basic Idea

▶ We do not compute all answers, but determine answers
incrementally

▶ At each step i , from the tuples seen so far in the database,
we compute a threshold δ

▶ The threshold δ has the property that any successively
retrieved answer will have a score s ≤ δ

▶ Therefore, we can stop as soon as we have gathered k
answers above δ, because any successively computed
answer will have a score below δ

Procedure TopAnswers(K,Q, k)
Input: KBK, intensional query relation symbol Q, k ≥ 1;
Output: Mapping rankedList such that rankedList(Q) contains top-k answers of Q
Init: δ = 1, for all rules r : P(x)← ϕ in P do

if P intensional then rankedList(P) = ∅;
if P extensional then rankedList(P) = TP endfor

1. loop
2. Active := {Q}, dg := {Q}, in := ∅,

for all rules r : P(x)← ϕ do exp(P, r) = false;
3. while (Active ̸= ∅) do
4. select P ∈ A where r : P(x)← ϕ, Active := Active \ {P}, dg := dg ∪ s(P, r);
5. ⟨t, s⟩ := getNextTuple(P, r)
6. if ⟨t, s⟩ ̸= NULL then insert ⟨t, s⟩ into rankedList(P),

Active := Active ∪ (p(P) ∩ dg);
7. if not exp(P, r) then exp(P, r) = true,

Active := Active ∪ (s(P, r) \ in), in := in ∪ s(p, r);
endwhile

8. Update threshold δ;
9. until (rankedList(Q) does contain k top-ranked tuples with score above δ)

or (rL′ = rankedList);
10. return top-k ranked tuples in rankedList(Q);

Procedure getNextTuple(P, r)
Input: intensional relation symbol P and rule r : P(x)← ∃y.f (R1(z1), . . . ,Rn(zl)) ∈ P;
Output: Next tuple satisfying the body of the r together with the score
Init:

loop
1. Generate next new instance tuple ⟨t, s⟩ of P, using tuples in rankedList(Ri) and (RankSQL or Postgres)
2. if there is no ⟨t, s′⟩ ∈ rankedList(P, r) with s ≤ s′ then exit loop

until no new valid join tuple can be generated
3. return ⟨t, s⟩ if it exists else return NULL

Example

Logic Program P is

q(x)← p(x)
p(x)← min(r1(x , y), r2(y , z))

RecordID r1 r2
1 a b 1.0 m h 0.95
2 c d 0.9 m j 0.85
3 e f 0.8 f k 0.75
4 l m 0.7 m n 0.65
5 o p 0.6 p q 0.55
...

...
...

...
...

...
...

What is
Top1(P, q) = Top1{⟨c, s⟩ | P |= q(c, s)} ?

q(x)← p(x)
p(x)← min(r1(x, y), r2(y, z))

RecordID r1 r2
1 a b 1.0 m h 0.95
2 c d 0.9 m j 0.85
3 e f 0.8 f k 0.75 ←

→ 4 l m 0.7 m n 0.65
5 o p 0.6 p q 0.55
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Action: STOP, top-1 tuple score is equal or above threshold 0.75 = max(min(1.0, 0.75),min(0.7, 0.95))

Queue δ
− 0.75

Predicate Answers
q ⟨e, 0.75⟩⟨l, 0.7⟩
p ⟨e, 0.75⟩, ⟨l, 0.7⟩

Top1(P, q) = {⟨e, 0.75⟩}

Note: no further answer will have score above threshold δ

Threshold computation
For an intentional predicate p, head of a rule r : p(x)← f (p1, p2, . . . , pn).

▶ consider a threshold variable δp

▶ with r.t⊥pi
(r.t⊤pi

) we denote the last tuple seen (the top ranked one) in rankedList(p, r)

▶ we define

p⊤i = max(δpi , r.t⊤pi
.score)

p⊥i = δ
pi

▶ if pi is an extensional predicate, we define

p⊤i = r.t⊤pi
.score

p⊥i = r.t⊥pi
.score

▶ for rule r we consider the equation δ(r)

δ
p = max(f (p⊥1 , p⊤2 , . . . , p⊤n), f (p⊤1 , p⊥2 , . . . , p⊤n), . . . , f (p⊤, p⊤, . . . , p⊥n))

▶ consider the set of equations of all equations involving intentional predicates, i.e.

∆ =
⋃

r∈P

{δ(r)} .

▶ for a query q(x), the threshold δ of the TopAnswers algorithm is defined as to be

δ = δ̄
q
,

where δ̄q is the solution to δq in the minimal solution ∆̄ of the set of equations ∆.
▶ note that δ̄q , can be computed iteratively as least fixed-point

Bibliography
Artale, A., Calvanese, D., Kontchakov, R., and Zakharyaschev, M. (2009).
The DL-Lite family and relations.
Journal of Artificial Intelligence Research, 36:1–69.

Baader, F., Peñaloza, R., and Suntisrivaraporn, B. (2007).

Pinpointing in the description logic EL+ .
In Proceedings of the 30th Annual German Conference on Advances in Artificial Intelligence (KI-07), number
4667 in Lecture Notes in Computer Science, pages 52–67, Berlin, Heidelberg. Springer-Verlag.

Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. (2003).
Description logic programs: combining logic programs with description logic.
In Proceedings of the 12th International Conference on World Wide Web, pages 48–57. ACM Press.

Klir, G. J. and Yuan, B. (1995).
Fuzzy sets and fuzzy logic: theory and applications.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Lloyd, J. W. (1987).
Foundations of Logic Programming.
Springer, Heidelberg, RG.

Lukasiewicz, T. and Straccia, U. (2008).
Managing uncertainty and vagueness in description logics for the semantic web.
Journal of Web Semantics, 6:291–308.

Straccia, U. (2012).
Top-k retrieval for ontology mediated access to relational databases.
Information Sciences, 198:1–23.

Straccia, U. (2013).
Foundations of Fuzzy Logic and Semantic Web Languages.
CRC Studies in Informatics Series. Chapman & Hall.

Straccia, U. and Casini, G. (2022).

A Minimal Deductive System for RDFS with Negative Statements.
In Proceedings of the 19th International Conference on Principles of Knowledge Representation and
Reasoning, pages 351–361.

ter Horst, H. J. (2005).
Completeness, decidability and complexity of entailment for rdf schema and a semantic extension involving
the owl vocabulary.
Journal of Web Semantics, 3(2-3):79–115.

Non-Classical Knowledge Representation
and Reasoning

Italian National PhD Course on AI, 2024

Umberto Straccia & Giovanni Casini

CNR - ISTI, Pisa, Italy
http://www.straccia.info

{umberto.straccia, giovanni.casini}@isti.cnr.it

1 / 55

http://www.straccia.info

Outline

▶ Lecture 4:
▶ Nonmonotonic reasoning
▶ Conditional reasoning - KLM framework (propositional logic)

▶ Lecture 5:
▶ Conditional reasoning - KLM framework (Description logics e RDFS)
▶ Belief Change - AGM framework (propositional logic)

▶ Lecture 6:
▶ Belief Change - AGM framework (other languages)
▶ Paraconsistent logics (brief introduction)

2 / 55

Nonmonotonic and Conditional
Reasoning

3 / 55

Monotonicity

▶ A logic is primarily defined by
▶ a language; and
▶ a consequence relation (o entailment relation).

▶ Language: propositional, first order, modal. . .

▶ Consequence Relation: A relation that determines what follows from
any set of premises. Generally defined rigorously on some formal
structures (semantics).

4 / 55

Monotonicity

Given a language L:
▶ A Consequence Relation |=:℘(L)× L is a relation between (finite)

sets of formulas and a formulas (e.g. {a, a→ b |= b}).
▶ A Consequence Operation C:℘(L)×℘(L) is a function that

associate to any set of formulas KB another set of formulas C(KB) s.t.:

C(KB) = {α | KB |= α}

5 / 55

Monotonicity
From Lecture 1:

6 / 55

Monotonicity
Classical logics are characterised by consequence relations
that are Tarskian.

Definition (Tarskian Consequence Relation)
A consequence relation |=: ℘(L)× L is tarskian if it satisfies
the following properties:

▶ Reflexivity: A |= α for every α ∈ A.

▶ Cut:
A ∪ {α} |= β A |= α

A |= β

▶ Monotonicity:
A |= β

A ∪ {α} |= β

for any set of formulas A and any formulas α, β.

Such properties are mirrored in the classical material implication ‘→’,
due to the deduction theorem (see lecture 1):

KB ∪ {α} |= β iff KB |= α→ β

7 / 55

Monotonicity

The same properties can be formulated for consequence operations

Definition (Tarskian Consequence Operation)
A consequence operation C : ℘(L)×℘(L) is tarskian if it
satisfies the following properties:

▶ Reflexivity: A ⊆ C(A).
▶ Cut: If A ⊆ B ⊆ C(A), then C(B) ⊆ C(A)
▶ Monotonicity: C(B) ⊆ C(A) whenever B ⊆ A

▶ Monotonicity tells us that augmenting the information in the premises,
whatever we had concluded before remains true.

▶ It represents the necessity of the truth consequence given the truth of
the premises.

▶ It is appropriate for modelling mathematical reasoning, bot not
necessarily for other domains.

8 / 55

Monotonicity

“The concept of following logically belongs to the cate-
gory of those concepts whose introduction into the domain
of exact formal investigations was not only an act of arbitrary
decision on the side of this or that researcher: in making pre-
cise the content of this concept, efforts were made to con-
form to the everyday ‘pre-existing’ way it is used. [. . .] the
way it is used is unstable, the task of capturing and recon-
ciling all the murky, sometimes contradictory intuitions con-
nected with that concept has to be acknowledged a priori as
unrealizable, and one has to reconcile oneself in advance
to the fact that every precise definition of the concept un-
der consideration will to a greater or lesser degree bear the
mark of arbitrariness." [Tarski, 2002, p.176]

9 / 55

Nonmonotonicity

While monotonic consequence relations are appropriate for
reasoning with certain and complete information, there are
domains in which we need to draw conclusions while facing
incomplete information.

The need to model logical systems appropriate for such
domains has become apparent quite early in the program of
Artificial Intelligence.

10 / 55

Nonmonotonicity - Frame Problem

▶ Frame Problem [McCarthy and Hayes, 1969]
It is a main problem in modelling actions. It deals with modelling what
remains unchanged after an event in a dynamic world:

▶ Inertia Assumption: by default, everything is presumed to remain in the
state in which it is.

▶ α holds. An event e happens. If it is not contradictory to assume that e
does not affect α, we assume that α still holds.

11 / 55

Nonmonotonicity - Frame Problem

▶ Frame Problem - Nonmonotonicity

Scenario: a robot moves with its arm a small sphere. Our rules tell us
that such an action will change the sphere’s position. We assume that it
will not affect other properties, like the sphere’s colour and shape.

However, if the sphere is made of soft material, we could later discover
that the shape of the sphere is changed.

12 / 55

Nonmonotonicity - Closed-World Assumption

▶ Closed-World Assumption (CWA) [Reiter, 1978]
In some contexts we assume that the information we have is complete:
if we cannot conclude that α holds, then we assume that α does not
hold.

▶ Example: Train timetable. We assume that all the trains departing from or
arriving at a certain station are only the trains listed in the station’s
timetable.

13 / 55

Nonmonotonicity - Interested domains

▶ Some reasoning domains need nonmonotonicity:

▶ Presumptive reasoning
▶ You know that Tweety is a bird, and you conclude that presumably

Tweety flies. later you discover that Tweety is a penguin, and
consequently does not fly.

▶ Counterfactual reasoning
▶ If Nazis had won WW-II, we would all be under a Nazi regime. But if

Nazis had won WW-II and in the 70’s there would have been a
WW-III won by San Marino, we would not all be under a Nazi regime.

▶ Causal Reasoning
▶ A big hearthquake would cause the collapse of this building. But if

we renovate this building, a big hearthquake would not cause its
collapse.

▶ Normative Reasoning
▶ You should not kill. But if someone threatens your life, you are

allowed to kill.

14 / 55

Nonmonotonicity - Default Reasoning

▶ Defaults.

In general, we refer to the notion of a default: a piece of information
that formalises some implicit background information that we assume to
hold, until we are forced to conclude that that is not the case.

▶ Many formalisms. Some examples:

▶ Inheritance nets
▶ Reiter’s Defaults
▶ McCarthy’s Circumscription
▶ Negation as Failure
▶ Defeasible Conditionals

15 / 55

Inheritance Nets

We have
▶ nodes (individuals or classes);
▶ positive links (defeasible subclass relations);
▶ negative links (defeasible disjointness relations).

Positive links can be treated as transitive, if no conflict with
negative links arises. In case, different decision strategies can
be applied to solve such conflicts.

16 / 55

Reiter’s Default Rules

Rules of the form

α : β1, . . . , βn

γ
.

If α (the prerequisite) is satisfied, and β1, . . . , βn (the
justifications) are all consistent with our KB, then we can
conclude γ (the consequent).
For example:

Bird : Fly
Fly

Bird : ¬Penguin,¬Ostrich,¬BrokenWing,
Fly

Given a system of default rules, there can be conflicts among
different rules. Different ways or resolving such conflicts defines
different ways of reasoning.

17 / 55

McCarthy’s Circumscription

Given a KB, we consider only the models that minimise the
extension of some propositions (or some predicate). In
particular, the extension of the predicate being abnormal is
minimised.

For example, consider a KB in which we have
▶ Bird(x) ∧ ¬Abnorm(x)→ Fly(x);
▶ Penguin(x)→ Bird(x) ∧ Abnorm(x);
▶ Ostrich(x)→ Bird(x) ∧ Abnorm(x);
▶ Eagle(x)→ Bird(x).

We consider only the models of the KB in which the extension
of the predicate Abnorm(x) is minimal. That is, it is applied only
to the individuals for which it is neccessary (here, penguins and
ostriches), while we considers the others as typical subcalsses
(here, eagles are treated as typical birds).

18 / 55

Negation as Failure (NAF)
This approach is the most popular for implementing the CWA.

One of the most popular frameworks is Logic Programming
(see lecture 2), where we reason by using rules like:

Fly ← Bird∧ ∼ BrokenWing

where ‘∼ BrokenWing’ must be interpreted as ‘it cannot be
proved BrokenWing’.
In this way we can implement CWA.

It is nonmonotonic. For example, from the fact

Bird ←
we can conclude Fly , but adding also the fact

BrokenWing ←
we are not able to activate the first rule anymore.

19 / 55

Negation as Failure (NAF)

Also, there may be conflicting rules. For example:

▶ p ←∼ q;
▶ q ←∼ p.

Different formal ways of managing these kind of conflicts
defines different kind of nonmonotonic consequence relations.

20 / 55

Deafeasible Conditionals

Here the information is modelled using monotonic conditionals

α→ β

and defeasible conditionals

α |∼ β

It is a popular approach to model if-then reasoning in particular
domains (e.g., presumptive, counterfactuals, causal, and
normative reasoning).

Depending on the domain, α |∼ β could be read as ‘If α, then
presumably β’, ‘If α were the case, then it would have been β’,
‘α causes β’, or ‘If α, then β is mandatory’. . .

21 / 55

There are strong connections among the different formalisms
for nonmonotonic reasoning, that in part have already been
investigated.

The basic idea is kind of always the same: we conclude
something relying on what we consider the standard situation, if
we are not forced to conclude that we are in an exceptional one.

Makinson’s book [Makinson, 2005] is a good starting point for
gaining a general view and an idea of the basic connections
between the formalisms in this area.

22 / 55

Deafeasible Conditionals

Today we focus on the conditional approach, in particular on
the framework by Kraus, Lehmann and Magidor (KLM)
[Kraus et al., 1990].

▶ Pros:
▶ A stronger formal analysis of the kind of reasoning it models

▶ A certain resemblance to the way we think

▶ It is often possible to implement it on top of classical reasoners,
sometimes with computational costs in the same category as the
correspondent classical reasoning

▶ Cons:
▶ It may be hard to apply it to logics that are more expressive than PL

▶ It may be hard to apply it to logics that are computationally light, without
sensibly augmenting the computational costs

23 / 55

KLM framework

24 / 55

KLM Framework

▶ With KLM approach we refer to the semantic approach to conditional
reasoning formalised by Kraus, Lehmann and Magidor
[Kraus et al., 1990].

▶ It is a step-stone for conditional reasoning, since they give a complete
formal characterisation of an ample class of conditionals.

25 / 55

KLM Framework

▶ It has been developed for modelling presumptive reasoning:

If it is a bird, then presumably it should be able to fly.

But the same formal framework is appropriate for modelling also other
kinds of reasoning. E.g., normative or counterfactual reasoning.

▶ The consequence does not follow necessarily from the premises, but
only with plausibility.

26 / 55

KLM Framework

Given a propositional language, with formulas α, β, γ, . . .,

▶ The conditional α |∼ β is read “If α holds, then typically β holds”.
▶ A knowledge base (KB) consists of a (finite) sets of conditionals

KB = {α1 |∼ β1, . . . , αn |∼ βn}

▶ Reasoning with a conditional base: we define an entailment relation |≈
that allows to derive new conditionals from a KB. E.g.,

{α1 |∼ β1, α1 |∼ β2} |≈ α1 |∼ (β1 ∧ β2)

27 / 55

KLM Framework

Before considering reasoning with conditionals, let’s
characterise some reasoning patterns, or closure properties.

A is a preferential set of conditionals if it closed under the
following properties:

▶ Reflexivity (Ref): α |∼ α

▶ Right Weakening (RW):
α |∼ β, |= β → γ

α |∼ γ

▶ Left Logical equivalence (LLE):
|= α↔ β, α |∼ γ

β |∼ γ

▶ Right Conjunction (And):
α |∼ β, α |∼ γ

α |∼ β ∧ γ

▶ Disjunction in the Premises (Or):
α |∼ γ, β |∼ γ

α ∨ β |∼ γ

▶ Cautious Monotonicity (CM):
α |∼ β, α |∼ γ

α ∧ β |∼ γ

28 / 55

KLM Framework

The most interesting property is Cautious Monotonicity

▶ Cautious Monotonicity (CM): α |∼ β, α |∼ γ

α ∧ β |∼ γ

If birds typically fly (bird |∼ fly) and birds typically have feathers
(bird |∼ feather), we can conclude that birds with feathers
typically fly (bird ∧ feather |∼ fly).

It is a very constrained form of the classical Monotonicity:

▶ Monotonicity (Mon): α |∼ γ

α ∧ β |∼ γ

29 / 55

KLM Framework

If a set of conditionals A is closed under all the preferential
properties, it is easy to prove that it is also closed under other
relevant properties.

For example:

▶ Cut (CT): α |∼ β, α ∧ β |∼ γ

α |∼ γ

▶ Modus Ponens (MP): α |∼ β, α |∼ β → γ

α |∼ γ

▶ Supraclassicality (Sup): |= α→ β

α |∼ β

(Sup) tells us that every preferential consequence extends
classical reasoning.

30 / 55

KLM Framework - Semantics

▶ Various ways to semantically characterise preferential sets of
conditionals.

▶ Preferential Interpretations: most popular semantics. Possible-worlds
semantics in the style of modal logics.

▶ Main idea:
We interpret “If α, then typically β” as “In all the most typical situations
in which α is true, also β is true”.

VS

Classical case (Tarskian): “If α, then β” holds if “In all the situation in
which α is true, also β is true”

31 / 55

KLM Framework - Semantics

Formalisation of the intuition:

we order the classical propositional interpretations (=
formalisation of possible situations) according to their relative
typicality.

Given two propositional interpretations I,J ,

I ≺ J

is read as
I is more typical than J

32 / 55

KLM Framework - Semantics

Definition (Preferential interpretation - simplified version!)

Given a propositional language L, letW be the set of all the
interpretations defined over L.

P = ⟨M,≺P⟩

▶ M⊆W is a set of interpretations;
▶ ≺P :M×M is a preference partial order over the propositional

interpretations.

33 / 55

KLM Framework - Semantics
Example
Preferential model P:

▶ Each point represents a propositional interpretation.
▶ p, b, f represent, respectively, ‘being a penguin’, ‘being a bird’, and

‘being able to fly’.
▶ I −→ J indicates I ≺P J .
▶ We indicate with ∥α∥P the set of interpretations satisfying α in the

model P. 34 / 55

KLM Framework - Semantics
Example
Preferential model P:

▶ Each point represents a propositional interpretation.
▶ p, b, f represent, respectively, ‘being a penguin’, ‘being a bird’, and

‘being able to fly’.
▶ I −→ J indicates I ≺P J .
▶ We indicate with ∥α∥P the set of interpretations satisfying α in the

model P. 35 / 55

KLM Framework - Semantics

Definition (Preferential interpretation (correct definition!))
Given a propositional language L, letW be the set of all the
interpretations defined over L.

P = ⟨S, l ,≺P⟩

▶ S is a set of objects (states);
▶ l : S 7→ W;
▶ ≺P : S × S is a preference partial order over the propositional

interpretations that satisfies the smoothness condition:
▶ For every formula α, ∥α∥P ̸= ∅ implies min≺P (∥α∥P) ̸= ∅, where

min≺P (A) = {x ∈ A |̸ ∃y ∈ A s.t. y ≺P x}

36 / 55

KLM Framework - Semantics

Regarding satisfaction, the idea is that a preferential model
satisfies the conditional α |∼ β if the most typical valuations
satisfying α satisfy also β.

Definition (Preferential interpretation - Satisfaction)
Let P = ⟨S, l ,≺P⟩ be a preferential interpretation and α |∼ β a
conditional.

P satisfies α |∼ β (P ⊩ α |∼ β) iff min≺P (∥α∥) ⊆ ∥β∥.

If P satisfies α |∼ β, then P is a preferential model of α |∼ β.

Given a set of conditional KB = {α1 |∼ β1, α2 |∼ β2, . . .}, P is a
preferential model of KB if P is a model of every αi |∼ βi ∈ KB.

37 / 55

KLM Framework - Semantics

Example
Preferential model P:

▶ For example, the model P satisfies p |∼ ¬f (P ⊩ p |∼ ¬f). That is,
typical penguins do not fly.

38 / 55

KLM Framework - Semantics
Kraus, Lehmann and Magidor proved a representation result:
a full correspondence between preferential sets of
conditionals and preferential interpretations.

Theorem ([Kraus et al., 1990])
Let L = {α, β, . . . } be a propositional language,W be the set of
propositional interpretations generated by L, and
L|∼ = {α |∼ α, β |∼ β, α |∼ β, . . .} the conditional language
generated from L.

A set of conditionals A (A ⊆ L|∼) is preferential if and only if it
corresponds to the set of conditionals satisfied by some
preferential interpretation P = ⟨S, l ,≺P⟩ (l : S 7→ W).

That is, A is preferential iff there is a P s.t.

A = {α |∼ β | P ⊩ α |∼ β}.

39 / 55

KLM Framework - Preferential Entailment

Now we can model a first form of reasoning, that is, an
entailment relation |≈P [Lehmann and Magidor, 1992].

Definition (Preferential entailment |≈P)
Let KB = {α1 |∼ β1, α2 |∼ β2, . . .} be any set of conditionals and
γ |∼ δ any conditional.

KB |≈P γ |∼ δ

if and only if, for every preferential model P of KB,

P ⊩ γ |∼ δ.

40 / 55

KLM Framework - Preferential Entailment

We have an entailment relation with its semantic
characterisation.

Moreover, it is possible to prove that we can reason using the
preferential properties as derivation rules.

That is, we have a proof system that uses the preferential
properties as derivation rules and is correct and complete w.r.t.
preferential entailment.

41 / 55

KLM Framework - Preferential Entailment

Example
Let

KB = {p |∼ ¬f ,b |∼ f ,b |∼ ft ,p → b, r → b},

where p, r ,b, f , ft represent, respectively, ‘being a penguin’,
‘being a robin’, ‘being a bird’, and ‘being able to fly’, having
feathers.

Note: The classical implication α→ β in our KB is an
abbreviation for the conditional α ∧ ¬β |∼ ⊥, that is satisfied in a
preferential model iff no state satisfies α ∧ ¬β, that is, every
state satisfies α→ β. No reason to go into further details here.

42 / 55

KLM Framework - Preferential Entailment

Example
From

KB = {p |∼ ¬f ,b |∼ f ,b |∼ ft ,p → b, r → b, r → ¬p},

we can conclude, for example, b |∼ f ∧ ft , since

Right Conjunction (And):
b |∼ f ,b |∼ ft

b |∼ f ∧ ft

43 / 55

KLM Framework - Preferential Entailment

Example
On the other hand, we can prove that p |∼ f is not derivable
from KB by creating a counter-model.

This is a desirable behaviour.

44 / 55

KLM Framework - Preferential Entailment
Example
But we can prove that the preferential entailment is a very weak
enatilment relation, since there are a lot of desirable conditionals that
we cannot derive.

The model presented before is also a countermodel also for r |∼ f .

Since in the KB there is no information saying that robins are atypical
birds in some way, we would like to reason about them assuming they
are typical birds.

For example, we would like to derive r |∼ f .
45 / 55

KLM Framework - Preferential Entailment

Preferential entailment is not able to model one of the main
desiderata of presumptive reasoning:

Presumption of Typicality [Lehmann, 1995]:

If we have no reason to conclude that a subclass (e.g. robins) is
atypical w.r.t. some super-class (e.g. birds) we have to assume
that it inherits all the typical characteristics of the super-class.

46 / 55

KLM Framework - Rational Monotonicity

First, there is a closure property that is interesting from this
point of view:

▶ Rational Monotonicity (RM): α |∼ γ, α ̸|∼ ¬β
α ∧ β |∼ γ

This is a form of constrained monotonicity, stronger than (CM).

b |∼ f ,b ̸|∼ ¬r
r ∧ b |∼ f

A preferential set of conditionals that is closed also under (RM)
is a rational set of conditionals.

Note: since we have r → b in the KB, r ∧ b can be substituted simply
with r .

47 / 55

KLM Framework - Ranked interpretations
A particular kind of preferential interpretation is introduced.

Definition (Ranked interpretation)
A ranked interpretation R = ⟨W, r⟩ is s.t. W is the set of all the
propositional interpretations, and the function r is as follows

▶ r :W 7→ (N ∪ {∞}) satisfying the following convexity condition: for
every n ∈ N, if r(I) = n then, for every k s.t. 0 ≤ k < n, there is a
J ∈ W for which r(J) = k .

Definition (Ranked interpretation - Satisfaction)
Let R = ⟨W, r⟩ be a ranked interpretation and α |∼ β a
conditional.

R satisfies α |∼ β (R ⊩ α |∼ β) iff minr (∥α∥) ⊆ ∥β∥, where
minr (∥α∥) = {I ∈ (∥α∥) | r(I) <∞ and
r(I) ∈ min{i | J ∈ (∥α∥) and r(J) = i}}

48 / 55

KLM Framework - Ranked interpretations

It corresponds exactly to preferential interpretations that are
organised in “layers”

A ranked model on the left, and the correspondent preferential model on the right.

49 / 55

KLM Framework - Ranked interpretations
Rational sets of conditionals are characterised by ranked
models.

Theorem ([Lehmann and Magidor, 1992])
Let L = {α, β, . . . } be a propositional language,W be the set of
propositional interpretations generated by L, and
L|∼ = {α |∼ α, β |∼ β, α |∼ β, . . .} the conditional language
generated from L.

A set of conditionals A (A ⊆ L|∼) is rational if and only if it
corresponds to the set of conditionals satisfied by some ranked
interpretation R = ⟨W , r⟩.

That is, A is rational iff there is a R s.t.

A = {α |∼ β | R ⊩ α |∼ β}.

50 / 55

Rational Closure
Given a set of conditional KB, in order to define an entailment
relation |≈R modelling Presumption of Typicality we consider a
particular ranked model of KB.

1. Given all the ranked models of KB, we order them as follows. Let
R = ⟨W , r⟩,R′ = ⟨W , r ′⟩ be models of KB, then

R <R R′iff for every I ∈ W, r(I) < r ′(I).

2. For every consistent KB, we can prove that there is a unique
<R-minimum among its models. That is, there is a single model RKB s.t.
RKB <R R for any ranked model R of KB [Giordano et al., 2015].

3. We define the entailment relation |≈R as follows:

KB |≈R α |∼ β iff RKB ⊩ α |∼ β

It can be proved [Giordano et al., 2015] that this construction
corresponds to a well-known consequence relation in non-monotonic
logics, that is known as Rational Closure
[Lehmann and Magidor, 1992] or System Z [Pearl, 1990].

51 / 55

KLM Framework - Rational Closure

This is the minimal model of the KB

KB = {p → b, r → b,p → ¬r ,b |∼ f ,p |∼ ¬f}.

We have KB |≈R r |∼ f , respecting the presumption of typicality.

52 / 55

KLM Framework - Rational Closure

There is another principle that we would like to formalise.

Presumption of Independence [Lehmann, 1995]:

A class a (e.g., birds) typically satisfies the properties b (e.g.,
flying) and c (e.g., having feathers). A subclass a′ (e.g.,
penguins) of a is atypical, since it does not satisfy b. If we have
no reason to conclude that the satisfaction of b has some
connection with the satisfaction of c, we should still allow a′ to
inherit the property c (that is, typical penguins have feathers).
Rational closure does not satisfy the presumption of
independence.

53 / 55

KLM Framework - Rational Closure

This is the minimal model of the KB

KB = {p → b,b |∼ f ,b |∼ ft ,p |∼ ¬f}.

The minimal model of KB does not satisfy p |∼ ft .

54 / 55

KLM Framework - Rational Closure

▶ There is the possibility of modelling |≈R relying only on classical
propositional decision procedures.

▶ There are various proposals built on top of rational closure, extending it,
and satisfying the presumption of independence.

▶ Can all this be adapted to other formalisms, like description logics?

We will consider these issues in the next lecture.

55 / 55

Bibliography
Giordano, L., Gliozzi, V., Olivetti, N., and Pozzato, G. L. (2015).
Semantic characterization of rational closure: From propositional logic to description logics.
Artif. Intell., 226:1–33.

Kraus, S., Lehmann, D., and Magidor, M. (1990).
Nonmonotonic reasoning, preferential models and cumulative logics.
Artificial Intelligence, 44(1):167–207.

Lehmann, D. (1995).
Another perspective on default reasoning.
Annals of Mathematics and Artificial Intelligence, 15:61–82.

Lehmann, D. and Magidor, M. (1992).
What does a conditional knowledge base entail?
Artificial Intelligence, 55(1):1–60.

Makinson, D. (2005).
Bridges from classical to nonmonotonic logic, volume 5 of Texts in computing.
College Publications.

McCarthy, J. and Hayes, P. (1969).
Some philosophical problems from the standpoint of artificial intelligence.
In Meltzer, B. and Michie, D., editors, Machine Intelligence 4, pages 463–502. Edinburgh University Press.

Pearl, J. (1990).
System z: a natural ordering of defaults with tractable applications to nonmonotonic reasoning.
In Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, TARK 90,
pages 121–135, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Reiter, R. (1978).
On Closed World Data Bases, pages 55–76.
Springer US, Boston, MA.

55 / 55

Tarski, A. (2002).
On the concept of following logically.
History and Philosophy of Logic, 23(3):155–196.

55 / 55

Non-Classical Knowledge Representation
and Reasoning

Italian National PhD Course on AI, 2024

Umberto Straccia & Giovanni Casini

CNR - ISTI, Pisa, Italy
http://www.straccia.info

{umberto.straccia, giovanni.casini}@isti.cnr.it

1 / 53

http://www.straccia.info

Recap

In the last lecture:
▶ The role of nonmonotonicity in Knowledge Representation
▶ A quick overview of some of the main logical formalisms
▶ KLM framework:

▶ Preferential sets
▶ Preferential interpretations and preferential entailment
▶ Rational Monotonicity and ranked interpretations
▶ Rational Closure

2 / 53

Recap - Preferential sets

A is a preferential set of conditionals if it closed under the
following properties:

▶ Reflexivity (Ref): α |∼ α

▶ Right Weakening (RW):
α |∼ β, |= β → γ

α |∼ γ

▶ Left Logical equivalence (LLE):
|= α ↔ β, α |∼ γ

β |∼ γ

▶ Right Conjunction (And):
α |∼ β, α |∼ γ

α |∼ β ∧ γ

▶ Disjunction in the Premises (Or):
α |∼ γ, β |∼ γ

α ∨ β |∼ γ

▶ Cautious Monotonicity (CM):
α |∼ β, α |∼ γ

α ∧ β |∼ γ

3 / 53

Recap - Preferential intepretations
Definition (Preferential interpretation - simplified version!)

Given a propositional language L, let W be the set of all the
interpretations defined over L.

P = ⟨M,≺P⟩

▶ M ⊆ W is a set of interpretations;
▶ ≺P : M×M is a preference partial order over the propositional

interpretations.

4 / 53

Recap - Preferential satisfaction and entailment

Definition (Preferential interpretation - Satisfaction)
Let P = ⟨S, l ,≺P⟩ be a preferential interpretation and α |∼ β a
conditional.

P satisfies α |∼ β (P ⊩ α |∼ β) iff min≺P (∥α∥) ⊆ ∥β∥.

Definition (Preferential entailment |≈P)
Let KB = {α1 |∼ β1, α2 |∼ β2, . . .} be any set of conditionals and
γ |∼ δ any conditional.

KB |≈P γ |∼ δ

if and only if, for every preferential model P of KB,

P ⊩ γ |∼ δ.

5 / 53

Recap - Rational Monotonicity

Presumption of Typicality [Lehmann, 1995]:

If we have no reason to conclude that a subclass (e.g. robins) is
atypical w.r.t. some super-class (e.g. birds) we have to assume
that it inherits all the typical characteristics of the super-class.

▶ Rational Monotonicity (RM): α |∼ γ, α ̸|∼ ¬β
α ∧ β |∼ γ

6 / 53

Recap - Rational Closure

A ranked model on the left, and the correspondent preferential model on the right.

▶ For every consistent KB, we can prove that there is a unique
<R-minimum among its models. That is, there is a single model RKB s.t.
RKB <R R for any ranked model R of KB [Giordano et al., 2015].

▶ We define the entailment relation |≈R as follows:

KB |≈R α |∼ β iff RKB ⊩ α |∼ β

7 / 53

Rational Closure and Description Logics
From lecture 2, the language of the Description Logic ALC:

(a, b) : R R(a, b) (John,Mary) : Father_of

▶ TBox (T): a finite set of inclusion axioms (C ⊑ D);
▶ ABox (A): a finite set of assertions about individuals (a : C | (a, b) : R);
▶ Knowledge base KB: a pair composed of a Tbox T and an ABox A

(KB = ⟨T ,A⟩).

8 / 53

Rational Closure and Description Logics

From lecture 2, the semantics of the Description Logic ALC:

9 / 53

Defeasible Subsumption
▶ In the last years there has been a lot of work for introducing defeasible

reasoning in formal ontologies.

▶ Some possible application areas: biomedicine, security, privacy, legal
informatics. . .

▶ Many proposals:

▶ Circumscription [Bonatti et al., 2009];

▶ Reiter’s default [Baader and Hollunder, 1995];

▶ Answer Set Programming [Eiter et al., 2008];

▶ Novel approaches [Bonatti et al., 2015];

▶ Preferential approach [Casini and Straccia, 2010, Giordano et al., 2015,
Bonatti, 2019, Britz et al., 2020].

Today we briefly introduce the latter.

10 / 53

Defeasible Subsumption

We can add a new kind of inclusion axioms:
▶ Defeasible concept subsumption

C <∼ D
Intuition

▶ Typical elements of C are in D (exceptional Cs need not)

Example
▶ EmpStud ≡ Student ⊓ Employee

▶ Student <∼ ¬∃pays.Tax

▶ EmpStud <∼ ∃pays.Tax

▶ EmpStud ⊓ Parent <∼ ¬∃pays.Tax

where ‘EmpStud’ represents ‘employed student’.

11 / 53

Defeasible Subsumption

We can formulate the properties for preferential and rational
sets of subsumption axioms corresponding to the propositional
ones:

(Ref) C <∼ C (LLE)
C ≡ D, C <∼ E

D <∼ E
(And)

C <∼ D, C <∼ E
C <∼ D ⊓ E

(Or)
C <∼ E , D <∼ E

C ⊔ D <∼ E
(RW)

C <∼ D, D ⊑ E
C <∼ E

(RM)
C <∼ D, C /<∼ ¬E

C ⊓ E <∼ D

(Cons) ⊤ /<∼ ⊥

12 / 53

Defeasible subsumption - Semantics

Definition (Modular Order)
Given a set X , ≺ ⊆ X × X is modular if there is a ranking
function rk : X −→ N s.t. for every x , y ∈ X , x ≺ y iff
rk(x) < rk(y)

Definition (Modular Interpretation)
A modular interpretation is a ternary tuple R = ⟨∆R, ·R,≺R⟩
where ⟨∆R, ·R⟩ is a DL interpretation and ≺R is a modular
order

Intuition
▶ The domain of interpretation is partitioned into ranks

▶ All objects are comparable (except if they are in the same rank)

13 / 53

Defeasible subsumption - Semantics

R : ∆R

TaxR

ParentR

StudentR EmployeeR

CompanyR

E
m

pS
tu

dR

x0 x1 x2(mary) x3

x4 x5(john) x6(ibm)

x7 x8 x9 x10

pays

pays worksFor

worksFor

empBy

R ⊩ C <∼ D iff min
rk

(∥C∥R) ⊆ ∥D∥R

14 / 53

Defeasible subsumption - Semantics

Preferring maximal typicality [Giordano et al., 2015]

Example
Let R1 = ⟨∆R1 , ·R1 ,≺R1⟩ and R2 = ⟨∆R2 , ·R2 ,≺R2⟩ be such that

▶ ∆R1 = ∆R2 = {xi | 1 ≤ i ≤ 5} (same domain!), ·R1 = ·R2 , ≺R1 and
≺R2 as below

R1 : ∆
R1

x1 x2x3

x4 x5

�

R2 : ∆
R2

x1 x2

x3

x4 x5

15 / 53

Defeasible subsumption - minimal model
▶ Let us fix an infinite countable domain ∆R (simplification!) and fix an

interpretation function ·R .

▶ Given a TBox T , the �-minimal model of T among those having ∆R as
domain and ·R as interpretation function (min�([KB]∆R)) is unique
[Giordano et al., 2015].

Definition (Minimal ranked entailment/Rational Closure
[Giordano et al., 2015, Britz et al., 2020])
Let T be a defeasible TBox.

KB |≈R C <∼ D iff min
�

([T]∆R) ⊩ C <∼ D

▶ There is an algorithm for computing minimal ranked entailment.
▶ Input: KB and α; Output: Yes iff T |≈R C <∼ D
▶ It can be implemented on top of any classical ALC reasoner.

16 / 53

Defeasible subsumption - minimal model
If we have also an ABox, then it is possible that the minimal
model is not unique.

Example
T =

{
⊤<∼ A ⊓ ∀r .¬A,

}
A =

{
(a,b) : r

}
The models for this KB have two minimal configurations:

1. a is at rank 0, and b is exceptional. Hence a : A and b : ¬A.

2. b is at rank 0, and a is exceptional. Hence b : A.

Different possible approaches:
▶ Skeptical: we take only the conclusions that are common to all the

possible options.
▶ Credulous: we take all the conclusions that are satisfied in at least one

possible options.
▶ Choice: we choose one specfic option and we take all the conclusions

that satisfied in it.

17 / 53

RDFS

▶ RDFS: W3C standard and popular formalism for KR

▶ Statements
▶ Triples of the form (s, p, o)
▶ Informally, binary predicate p(s, o)

▶ (fever,hasTreatment,paracetamol)

▶ Special predicates: typing and specialisations, etc.
▶ (paracetamol, type,antipyretic)
▶ (antipyretic, sc,drug)

18 / 53

Main Steps

▶ We start from the logic ρdf
▶ A minimal, but significant RDFS fragment
▶ Covers all essential features of RDFS

▶ We extend ρdf into ρdf⊥ = ρdf + disjointness statements
▶ disjointness relationships:

(opioid,⊥c,antipyretic)

(hasDrugAddiction,⊥p,usesDrugControlled)

▶ We extend ρdf⊥ into defeasible ρdf⊥ adding defeasible information
▶ defeasible triples:

⟨DrugUser, sc,Young⟩
⟨usesDrug, sp,hasDrugAddiction⟩

19 / 53

Preliminaries: ρdf

▶ ρdf: defined on subset of the RDFS vocabulary:

ρdf = {sp, sc, type, dom, range}

Informally,
▶ (p, sp, q)

▶ p is a sub property of property q
▶ (c, sc, d)

▶ c is a sub class of class d
▶ (a, type, b)

▶ a is of type b
▶ (p, dom, c)

▶ domain of property p is c
▶ (p, range, c)

▶ range of property p is c

20 / 53

ρdf

Example

G = {(yP, sc,hP)
(dU, sc,uhP)
(dU, sc,yP)
(cDU, sc,hP)
(cDU, sc,dU)}

Read:
▶ yP → ‘Young People’;
▶ hP → ‘Happy People’;
▶ dU → ‘Drug Users’;
▶ uhP → ‘Unhappy People’;
▶ cDU → ‘Controlled Drug User’;

21 / 53

ρdfSemantics

ρdf interpretation:

I = ⟨∆R,∆DP ,∆C,∆L,P[[·]],C[[·]], ·I⟩ ,

1. ∆R are the resources

2. ∆DP are property names

3. ∆C ⊆ ∆R are the classes

4. ∆L ⊆ ∆R are the literal values and contains all the literals in L ∩ V

5. P[[·]] is a function P[[·]] : ∆DP → 2∆R×∆R

6. C[[·]] is a function C[[·]] : ∆C → 2∆R

7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆DP , where ·I is the
identity for literals; and

8. ·I maps each variable x ∈ B into a value xI ∈ ∆R

22 / 53

ρdf model/entailment
I G if and only if I satisfies conditions

Simple:

1. for each (s, p, o) ∈ G, pI ∈ ∆DP and (sI , oI) ∈ P[[pI]]

Subproperty:

1. P[[spI]] is transitive over ∆DP

2. if (p, q) ∈ P[[spI]] then p, q ∈ ∆DP and P[[p]] ⊆ P[[q]]
Subclass:

1. P[[scI]] is transitive over ∆C

2. if (c, d) ∈ P[[scI]] then c, d ∈ ∆C and C[[c]] ⊆ C[[d]]
Typing I:

1. x ∈ C[[c]] if and only if (x , c) ∈ P[[typeI]];
2. if (p, c) ∈ P[[domI]] and (x , y) ∈ P[[p]] then x ∈ C[[c]]
3. if (p, c) ∈ P[[rangeI]] and (x , y) ∈ P[[p]] then y ∈ C[[c]]

Typing II:

1. for each e ∈ ρdf, eI ∈ ∆DP ;
2. if (p, c) ∈ P[[domI]] then p ∈ ∆DP and c ∈ ∆C

3. if (p, c) ∈ P[[rangeI]] then p ∈ ∆DP and c ∈ ∆C

4. if (x , c) ∈ P[[typeI]] then c ∈ ∆C.

G H if and only if every model of G is also a model of H
23 / 53

Deductive System for ρdf

G H

1. Simple:
(a) G

G′ for a map µ : G′ → G (b) G
G′ for G′ ⊆ G

2. Subproperty:
(a) (A,sp,B),(B,sp,C)

(A,sp,C)
(b) (D,sp,E),(X ,D,Y)

(X ,E,Y)

3. Subclass:
(a) (A,sc,B),(B,sc,C)

(A,sc,C)
(b) (A,sc,B),(X ,type,A)

(X ,type,B)

4. Typing:
(a) (D,dom,B),(X ,D,Y)

(X ,type,B)
(b) (D,range,B),(X ,D,Y)

(Y ,type,B)

5. Implicit Typing:

(a) (A,dom,B),(D,sp,A),(X ,D,Y)
(X ,type,B)

(b) (A,range,B),(D,sp,A),(X ,D,Y)
(Y ,type,B)

24 / 53

Extending ρdfinto ρdf⊥

ρdf⊥ Syntax:
▶ Disjointness predicates: ⊥c and ⊥p

▶ (c,⊥c, d): classes c and d are disjoint
▶ (p,⊥p, q): properties p and q are disjoint

Example G = {(yP, sc,hP)

(dU, sc,uhP)

(dU, sc,yP)

(cDU, sc,hP)

(cDU, sc,dU)}

G′ = G ∪ {(uhP,⊥c,hP)}

(uhP,⊥c,hP):
the class Unhappy People and the class Happy People are disjoint.

25 / 53

ρdf⊥

▶ Objectives of ρdf⊥ semantics:

1. Deductive system = ρdf + some additional rules
▶ any RDFS reasoner/store may handle the new triples as ordinary

triples if it does not want to take account of the extra inference
capabilities

2. Any ρdf⊥ graph is satisfiable.

3. Computational complexity stays in the same class as ρdf.

For a detailed semantics, see [Casini and Straccia, 2023].

26 / 53

ρdf⊥ Deductive system

From an inference system point of view, new derivation rules are
added to the ρdf derivation system. For example:

▶ Conceptual Disjointness:

(a) (A,⊥c,B)
(B,⊥c,A)

(b) (A,⊥c,B),(C,sc,A)
(C,⊥c,B)

(c) (A,⊥c,A)
(A,⊥c,B)

We define an entailment relation ⊥ and a derivation relation ⊥

that extend the ρdf ones and ⊥ is correct and complete w.r.t.

⊥ .

27 / 53

ρdf⊥

Example (Cont.)
From (uhP,⊥c, hP), (cDU, sc, hP), (cDU, sc, dU) and (dU, sc, uhP) we
conclude (cDU,⊥c, cDU).

(uhP,⊥c, hP)

(hP,⊥c, uhP) (cDU, sc, hP)

(cDU,⊥c, uhP)

(cDU, sc, dU) (dU, sc, uhP)

(cDU, sc, uhP)

(cDU,⊥c, cDU)

Hence, being a controlled drug user is incompatible with being a controlled
drug user (that is, cDU should be an empty class).
Analogously, from (uhP,⊥c, hP), (dU, sc, yP), (yP, sc, hP) and (dU, sc, uhP)

we conclude (dU,⊥c, dU).

28 / 53

Defeasible ρdf⊥

Triples (A,⊥c,A) and (A,⊥p,A) indicate an incoherence, a conflict in
our graph.

Such conflicts can be solved introducing defeasible reasoning.

We introduce in our language triples:
▶ ⟨A, sc,B⟩: “The instances of the class A are usually also instances of

the class B”.
▶ ⟨A, sp,B⟩: “The instances of the property A are usually also instances

of the property B”.

29 / 53

Defeasible ρdf⊥- Minimal Entailment

Ranked ρdf⊥ Interpretations.

A ranked interpretation is a pair R = (M, r), where M is the
set of all ρdf⊥ interpretations defined on a fixed set of domains
∆R,∆P , ∆C ,∆L, and r is a ranking function over M

r : M 7→ N ∪ {∞}

satisfying a convexity property:
▶ there is an interpretation I ∈ M s.t. r(I) = 0;
▶ for each i > 0, if there is an interpretation I ∈ M s.t. r(I) = i , then

there is an interpretation I′ ∈ M s.t. r(I′) = (i − 1).

30 / 53

Defeasible ρdf⊥- Minimal Entailment

rank ∞ MF\ (rank 0 ∪ rank 1 ∪ rank 2)

rank 2 ∥(s, sc,b)∥\ (rank 0 ∪ rank 1)

rank 1 ∥(b, sc, f) ∪ (s, sc,b)∥\ rank 0

rank 0 ∥(b,⊥c,b) ∪ (s, sc,b)∥

c_min(t ,R) = {I ∈ MN | I ̸ (t ,⊥c, t) and there is no I ′ ∈ MN s.t.

I ′ ̸ (t ,⊥c, t) and r(I ′) < r(I)} .

p_min(t ,R) = {I ∈ MN | I ̸ (t ,⊥p, t) and there is no I ′ ∈ MN s.t.

I ′ ̸ (t ,⊥p, t) and r(I ′) < r(I)} .

where MN = {I ∈ M | r(I) ∈ N}.

E.g., in the above ranked interpretation R, the interpretations in
c_min(b,R) will be in rank 1.

31 / 53

Defeasible ρdf⊥- Minimal Entailment

Given a graph G and a fixed set of ρdf⊥-interpretations in our
ranked models (see reference for the details), we take under
consideration the minimal ranked model for G, that is, the
ranked model in which every ρdf⊥-interpretations is ranked as
low as possible.

▶ For every G, the minimal ranked model Rmin G exists and it is unique!

32 / 53

Defeasible ρdf⊥- Minimal Entailment

Minimal Entailment |=min is defined by the minimal ranked
model of a graph G.

G |=min [s,p,o], iff RminG [s,p,o].

with [s,p,o] ∈ {(s,p,o), ⟨s,p,o⟩}.

We now present (via an example) the decision procedure that is
correct and complete w.r.t. |=min.

33 / 53

Defeasible ρdf⊥- Example

G′ = {(yP, sc,hP)
(dU, sc,uhP)
(dU, sc,yP)
(cDU, sc,hP)
(cDU, sc,dU)
(uhP,⊥c,hP)}

34 / 53

Defeasible ρdf⊥- Example

G′ = {⟨yP, sc,hP⟩
⟨dU, sc,uhP⟩
⟨dU, sc,yP⟩
⟨cDU, sc,hP⟩
(cDU, sc,dU)
(uhP,⊥c,hP)}

⟨yP, sc,hP⟩:
Young People are usually Happy People.

35 / 53

Defeasible ρdf⊥- Ranking

Informally:
1. Create a ranking of the defeasible triples in G.

▶ Check the presence of potential conflicts in a graph:
▶ translate all the defeasible triples into ρdf⊥triples.

⟨A, sc,B⟩ ⇒ (A, sc,B)

▶ Once a triple (A,⊥c,A) (resp. (A,⊥p,A)) is derived, all the triples
⟨A, sc,B⟩ (resp. ⟨A, sp,B⟩) are associated to a higher rank.

▶ We iterate the procedure.

36 / 53

Defeasible ρdf⊥- Example

G′ = {⟨yP, sc,hP⟩
⟨dU, sc,uhP⟩
⟨dU, sc,yP⟩
⟨cDU, sc,hP⟩
(cDU, sc,dU)
(uhP,⊥c,hP)}

37 / 53

Defeasible ρdf⊥- Example

G′ = {(yP, sc,hP)
(dU, sc,uhP)
(dU, sc,yP)
(cDU, sc,hP)
(cDU, sc,dU)
(uhP,⊥c,hP)}

▶ We derive (dU,⊥c, dU) and (cDU,⊥c, cDU).

38 / 53

Defeasible ρdf⊥- Example

G′ = {⟨yP, sc,hP⟩
⟨dU, sc,uhP⟩
⟨dU, sc,yP⟩
⟨cDU, sc,hP⟩
(cDU, sc,dU)
(uhP,⊥c,hP)}

▶ All the defeasible triples with dU and cDU as first members move to the
first rank.

39 / 53

Defeasible ρdf⊥- Example

G′
1 = {⟨dU, sc,uhP⟩

⟨dU, sc,yP⟩
⟨cDU, sc,hP⟩
(cDU, sc,dU)
(uhP,⊥c,hP)}

▶ Now we consider the information at the first rank.

40 / 53

Defeasible ρdf⊥- Example

G′
1 = {(dU, sc,uhP)

(dU, sc,yP)
(cDU, sc,hP)
(cDU, sc,dU)
(uhP,⊥c,hP)}

▶ We can still derive (cDU,⊥c, cDU).

41 / 53

Defeasible ρdf⊥- Example

G′
1 = {⟨dU, sc,uhP⟩

⟨dU, sc,yP⟩
⟨cDU, sc,hP⟩
(cDU, sc,dU)
(uhP,⊥c,hP)}

▶ All the defeasible triples with cDU as first member move to the second
rank.

42 / 53

Defeasible ρdf⊥- Example

G′
2 = {⟨cDU, sc,hP⟩

(cDU, sc,dU)
(uhP,⊥c,hP)}

▶ Now we consider the information at the second rank.

43 / 53

Defeasible ρdf⊥- Example

G′
2 = {(cDU, sc,hP)

(cDU, sc,dU)
(uhP,⊥c,hP)}

▶ We cannot derive any more conflicts. The ranking is done.

44 / 53

Defeasible ρdf⊥- Ranking

2 Decision procedure for a query ⟨s, sc, o⟩:

▶ Given a query ⟨s, sc, o⟩ (resp., ⟨s, sp, o⟩), check the rank of s:
▶ check which is the lowest rank in which we do not derive (s,⊥c, s)

(resp., (s,⊥p, s)).
▶ Given the rank, check whether we can derive (s, sc, o) (resp., (s, sp, o)).

▶ Deciding whether a graph G defeasibly implies ⟨s, p, o⟩ can be done in
polynomial time (ground case).

45 / 53

Defeasible ρdf⊥- Example

Query: ⟨cDU, sc,uhP⟩.

G′ = {⟨yP, sc,hP⟩
⟨dU, sc,uhP⟩
⟨dU, sc,yP⟩
⟨cDU, sc,hP⟩
(cDU, sc,dU)
(uhP,⊥c,hP)}

▶ We check at which rank (cDU,⊥c, cDU) does not hold.

46 / 53

Defeasible ρdf⊥- Example

Query: ⟨cDU, sc,uhP⟩.

G′ = {(yP, sc,hP)
(dU, sc,uhP)
(dU, sc,yP)
(cDU, sc,hP)
(cDU, sc,dU)
(uhP,⊥c,hP)}

▶ Considering the entire graph (rank 0), we derive (cDU,⊥c, cDU).

47 / 53

Defeasible ρdf⊥- Example

Query: ⟨cDU, sc,uhP⟩.

G′
1 = {⟨yP, sc,hP⟩

⟨dU, sc,uhP⟩
⟨dU, sc,yP⟩
⟨cDU, sc,hP⟩
(cDU, sc,dU)
(uhP,⊥c,hP)}

▶ Considering the graph at rank 1, we still derive (cDU,⊥c, cDU).

48 / 53

Defeasible ρdf⊥- Example

Query: ⟨cDU, sc,uhP⟩.

G′
2 = {⟨yP, sc,hP⟩

⟨dU, sc,uhP⟩
⟨dU, sc,yP⟩
⟨cDU, sc,hP⟩
(cDU, sc,dU)
(uhP,⊥c,hP)}

▶ Considering the graph at rank 2, we do not derive (cDU,⊥c, cDU).

49 / 53

Defeasible ρdf⊥- Example

Query: ⟨cDU, sc,uhP⟩.

G′
2 = {⟨yP, sc,hP⟩

⟨dU, sc,uhP⟩
⟨dU, sc,yP⟩
⟨cDU, sc,hP⟩
(cDU, sc,dU)
(uhP,⊥c,hP)}

▶ We have to check entailment of ⟨cDU, sc, uhP⟩ w.r.t. this graph.

50 / 53

Defeasible ρdf⊥- Example

Query: ⟨cDU, sc,uhP⟩.

G′
2 = {⟨yP, sc,hP⟩

⟨dU, sc,uhP⟩
⟨dU, sc,yP⟩
(cDU, sc,hP)
(cDU, sc,dU)
(uhP,⊥c,hP)}

▶ From this graph we cannot derive (cDU, sc, uhP).
Hence ⟨cDU, sc, uhP⟩ is not entailed.

51 / 53

BELIEF CHANGE

52 / 53

The following slides are from a course held at ESSLLI 2018
and prepared with Richard Booth (University of Cardiff)

53 / 53

AGM Theory

4

Example

5

Example

6

7

2 Main Types of
Belief Change

8

Formal Setting

9

Formal Setting

10

Formal Setting

12

Formal Setting

13

Notation

15

Notation

16

Belief revision:
The question formalised

17

Revision =
contraction + expansion

18

Belief contraction

19

Partial meet contraction

20

Partial meet contraction

21

Partial meet contraction

22

Characterisation theorem for
partial meet contraction

23

Partial meet revision

24

Characterisation theorem for
partial meet revision

25

Plausibility orderings

26

Plausibility orderings

27

Plausibility orderings

28

Plausibility orderings

29

Plausibility orderings

30

Contracting α

31

Contracting α

32

Contracting α

33

Contracting α

34

Formal details

35

Formal details

36

Characterisation result

37

Revising by α

38

The picture

39

Characterisation result

40

The Harper Identity

41

The Harper Identity

43

Other approaches

Bibliography

46

Bibliography
Baader, F. and Hollunder, B. (1995).
Embedding defaults into terminological knowledge representation formalisms.
J. Autom. Reason., 14(1):149–180.

Bonatti, P. A. (2019).
Rational closure for all description logics.
Artif. Intell., 274:197–223.

Bonatti, P. A., Faella, M., Petrova, I. M., and Sauro, L. (2015).
A new semantics for overriding in description logics.
Artif. Intell., 222:1–48.

Bonatti, P. A., Lutz, C., and Wolter, F. (2009).
The complexity of circumscription in dls.
J. Artif. Intell. Res., 35:717–773.

Britz, K., Casini, G., Meyer, T., Moodley, K., Sattler, U., and Varzinczak, I. (2020).
Principles of klm-style defeasible description logics.
ACM Trans. Comput. Logic, 22(1).

Casini, G. and Straccia, U. (2010).
Rational closure for defeasible description logics.
In Janhunen, T. and Niemelä, I., editors, Logics in Artificial Intelligence - 12th European Conference, JELIA
2010, Helsinki, Finland, September 13-15, 2010. Proceedings, volume 6341 of Lecture Notes in Computer
Science, pages 77–90. Springer.

Casini, G. and Straccia, U. (2023).
Defeasible RDFS via rational closure.
Inf. Sci., 643:118409.

Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., and Tompits, H. (2008).
Combining answer set programming with description logics for the semantic web.
Artif. Intell., 172(12-13):1495–1539.

53 / 53

Giordano, L., Gliozzi, V., Olivetti, N., and Pozzato, G. L. (2015).
Semantic characterization of rational closure: From propositional logic to description logics.
Artif. Intell., 226:1–33.

Lehmann, D. (1995).
Another perspective on default reasoning.
Annals of Mathematics and Artificial Intelligence, 15:61–82.

53 / 53

Non-Classical Knowledge Representation

and Reasoning

Italian National PhD Course on AI, 2024

Umberto Straccia & Giovanni Casini

CNR - ISTI, Pisa, Italy

http://www.straccia.info
{umberto.straccia, giovanni.casini}@isti.cnr.it

1 / 12

http://www.straccia.info

Recap

In the last lecture:

I Rational closure for Description Logic ALC
I Rational closure for ⇢df

I Belief Change - the AGM aopporoach:

I Contraction

I Revision

2 / 12

19

Partial meet contraction

22

Characterisation theorem for
partial meet contraction

23

Partial meet revision

24

Characterisation theorem for
partial meet revision

33

Contracting α

38

The picture

BR and Non-monotonicity
Today’s topic

In the AGM approach we assume that the underlying
consequence operator satisfies some properties. In particular, it
is assumed that it is Tarskian and Compact.

• Are these constraints essential for developing and AGM-
style analysis?

• Today we consider dropping one of the property that a
consequence operator needs to satisfy to be Tarskian:
Monotonicity.

!2

AGM Assumptions
AGM made some assumptions about the underlying logic :

• Language: closed under propositional operators.

• Consequence operator:

1. Tarskian

• Monotonicity: if then

• Idempotence:

• Inclusion:

!3

⟨L, Cn⟩

A ⊆ B Cn(A) ⊆ Cn(B)

Cn(A) = Cn(Cn(A))

A ⊆ Cn(A)

AGM Assumptions
2.AGM Assumptions:

• Deduction: iff

• Supraclassicality: if then

• Compactness: if , then for
some finite

• Disjunction in the premises: ___________________

!4

(α → β) ∈ Cn(A)β ∈ Cn(A ∪ {α})

α ∈ Cl(A) α ∈ Cn(A)

α ∈ Cn(A) α ∈ Cn(A′�)
A′ � ⊆ A

γ ∈ Cn(A ∪ {α}) γ ∈ Cn(A ∪ {β})
γ ∈ Cn(A ∪ {α ∨ β})

AGM Assumptions
We may need an analysis of belief change for logics that do not
satisfy the above prerequisites.

➡ What happens if we drop some of them?  
Can we still develop an AGM-style analysis of belief change? 
 

Today we consider dropping one of the Tarskian properties:

 Monotonicity

!5

Non-monotonicity

!7

Recent work in revision of non-monotonic theories:

➡ Answer Set Programming

➡ Conditional Reasoning

Today we will focus on conditional reasoning:

➡ Its relation with belief revision

➡ Known issues

➡ Recent characterisations of BR for conditional reasoning

And at the end also have a look at ASP.

Non-monotonicity
Example 

Remember the KB we saw in the first lecture?

•Sweden is a part of Europe
•All European swans are white
•The bird caught in the trap is a swan
•The bird caught in the trap is from Sweden

From this we can derive
• The bird caught in the trap is white

If we are informed that the caught bird is a black swan, we need to
revise our KB in order to preserve consistency.

!8

Non-monotonicity
Example 

Consider the following slightly modified KB:

•Sweden is a part of Europe
•Typically, European swans are white
•The bird caught in the trap is a swan
•The bird caught in the trap is from Sweden

From such a KB we can conclude that
•Presumably, the bird caught in the trap is white

Such a conclusion is just tentative.

We are informed that the swan is black

We drop the presumptive conclusion, we do not need to make changes to the KB,
since it admits exceptions to the second statement.

!9

Non-monotonicity
There is a connection between Belief Revision and Non-monotonic Reasoning 

• Both are aimed at managing potential conflicts among pieces of information 

•Non-monotonic reasoning can manage conflicting information
•Still, it is possible to have inconsistencies also in non-monotonic KBs

!10

Example
Consider again the KB:

•Sweden is a part of Europe
•Typically, European swans are white
•The bird caught in the trap is a swan
•The bird caught in the trap is from Sweden

We are informed that
•Typically, European swans are blue

This is a conflict that is problematic also for non-monotonic systems.

Non-monotonicity

➡ Assume we are facing conflicting pieces of information: 
should such a conflict be managed by the non-
monotonic machinery or by some belief change
operator? 
 

➡How to characterise such belief change operators for
non-monotonic reasoning?

!11

For non-monotonic conditionals, the following does not hold:

 Monotonicity ______________

Conditionals like and can coexist
consistently.

Note:
non-monotonicity conditional non-monotonicity entailment operator

Monotonic entailment operator Cn:

➡ If then

It is compatible with non-monotonic conditionals.

Conditional Reasoning

!17

α ⇒ β
α ∧ γ ⇒ β

bird ⇒ f ly penguin ∧ bird ⇒ ¬f ly

≠

α ⇒ β ∈ Cn(K) α ⇒ β ∈ Cn(K ∪ {γ ⇒ δ})

Conditional Reasoning
A popular semantics for non-monotonic conditionals :preferential semantics.

Interpretations :

• W is a (multi)set of possible worlds (propositional valuations)

• is a preference relation defined over W :

• transitive, asymmetric, and smooth

Smoothness: for every , if then , where

 is read as ‘the situation described by w is preferred to the situation described
by v’

!18

M = (W, ≺)

α ⇒ β

≺

w ≺ v

α Mod(α) ≠ ∅ min
≺

(Mod(α)) ≠ ∅

min
≺

(Mod(α)) = {w ∈ Mod(α) ∣ /∃v ∈ w s.t. v ∈ Mod(α) and v ≺ w}

≺

Conditional Reasoning
A conditional is satisfied by an interpretation
() if the preferred worlds satisfying satisfy also . That is,

  
Depending on the interpretation we give to the relation , the conditionals 
 have been interpreted in various ways. For example:

• Expectations: “Typically, if then “.

• Obligations: “If , then it ought to be ”.

• Counterfactual/subjunctive conditionals: “If were the case, then would
have been the case too”.

!19

M = (W, ≺)α ⇒ β
α β

min
≺

(Mod(α)) ⊆ Mod(β)

≺
α ⇒ β

α

α

α

β

β

β

M ⊩ α ⇒ β

Conditional Reasoning
Theorem [Kraus et Al. (1990)]
A conditional entailment operator Cn(.) is closed under the preferential properties iff,
for every conditional KB K, Cn(K) can be defined using a preferential model. That is,

for some preferential model M.

!21

Special case - Preferential Closure Pr(.):

Pr(K) is the smallest preferential closure containing K.

 iff is derivable from K using the preferential properties

Pr(.) is Tarskian! 
(and hence monotonic)

Cn(K) = {α ⇒ β ∣ M ⊩ α ⇒ β}

Pr(K) = {α ⇒ β ∣ M ⊩ α ⇒ β for all M s.t. M ⊩ K}

α ⇒ β ∈ Pr(K) α ⇒ β

Conditional Reasoning

!22

Let’s consider another property:

 
 
necessary for the satisfaction of important reasoning patterns, as

Presumption of typicality:  
Given the information at our disposal, we assume we are in the most
expected situation.

________________________bird ⇒ f ly

bird ∧ sparrow ⇒ f ly

bird ⇏ ¬sparrow

Conditional Reasoning

!23

The entailment operators aimed at modelling some kind of presumptive reasoning are usually
non-monotonic (and satisfy (RM)).

• I know that typically birds fly ()

• I hear about some ‘Dodo’ bird, but I know nothing about it. So, I am not aware whether it is
an atypical bird ()

• With this information, I presume that dodos behave like normal birds 
()

• Later I am informed that dodos are extinct, and that actually they were very strange birds.
Not really a typical bird ()

• With this new piece of information, I can to drop the previous conclusion, still satisfying (RM)  
()

bird ⇒ f ly

bird ∧ dodo ⇒ f ly

bird ⇏ ¬dodo

bird ⇒ ¬dodo

bird ∧ dodo ⇏ f ly

dodo ∧ bird ⇒ f ly ∈ Cn({bird ⇒ f ly})
dodo ∧ bird ⇒ f ly ∉ Cn({bird ⇒ f ly, bird ⇒ ¬dodo})

Conditional Reasoning

Theorem [Lehmann and Magidor (1992)]
A conditional entailment operator Cn(.) is closed under the preferential properties +
(RM) iff, for every conditional KB K, Cn(K) can be defined using a ranked model. That is,

for some ranked model R.

!24

Ranked interpretation :

R is a preferential interpretation and  
satisfies modularity:

If then either or 
 
 
 

Cn(K) = {α ⇒ β ∣ M ⊩ α ⇒ β}

R = (W, ≺)

≺

x ≺ y z ≺ y x ≺ z ≺

!25

Two sides of the same coin
Remember the semantic
characterisation of AGM
revision?

It was built using a
specific class of
preferential models, the
ones in which is
modular.

The worlds in the yellow
part define K ⋆ α

≺

≺

!26

Two sides of the same coin
 
The yellow part
corresponds to

 
So, there is a strong
correspondence: 
in the same ranked
model, holds iff

min
≺

(Mod(α))

α ⇒ β
β ∈ K ⋆ α

≺

Two sides of the same coin
There is the possibility of representing revision policies via
subjunctive conditionals:

 
That is, the revision policies can be represented via
conditionals interpreted as “if were the case, then would
hold”.

Question: Can we extend the revision operators to a language
containing the correspondent conditionals?

Implementing such a step would allow also to revise the
revision policies.

!27

β ∈ K ⋆ α iff α ⇒ β

α β

Two sides of the same coin

Gärdenfors’ Impossibility result [Gärdenfors (1988)],
here in Rott’s version [Rott (1989)]:

Assume a logic where: 

• Language L: Propositional language + conditionals
• Operator Cn(.): operator for L s.t. it corresponds to propositional logic for the

propositional fragment (and it is monotonic over the entire L) 

 Belief Revision Model : K is a set of Cn-theories (closed under propositional
expansion) and is a revision operation on the theories K in K satisfying :

!28

α ⇒ β

(⋆ 2) If α ∉ Cn(∅), then α ∈ K ⋆ α (Success)

⟨K, ⋆ ⟩

⟨L, Cn⟩

⋆

(⋆ 4) If ¬α ∉ K, then Cn(K ∪ {α}) ⊆ K ⋆ α (Vacuity)
(⋆ 6) If ¬α ∉ Cn(∅), then ⊥ ∉ K ⋆ α (Consistency)
(GRT) β ∈ K ⋆ α iff α ⇒ β ∈ K (Ramsey Test)

Answer: No! 
Or at least not easily.

Two sides of the same coin
Let B be a theory in K, and let be two contingent propositions, that is, s.t.

and such that

It turns out that

In contradiction with

!29

α, β

{α ∨ β, ¬α ∨ β, α ∨ ¬β, ¬α ∨ ¬β} ∩ B = ∅

α ∉ Cn(∅); ¬α ∉ Cn(∅); β ∉ Cn(∅); ¬β ∉ Cn(∅)

⊥ ∈ Cn(B ∪ {α}) ⋆ ¬α

(⋆ 6) If ¬α ∉ Cn(∅), then ⊥ ∉ K ⋆ α (Consistency)

A lot has been discussed about the implications of Gardenfors’ result, and its hidden assumptions.

There have been some interesting proposals about the revision of conditionals respecting the
Ramsey test, but avoiding the impossibility result.

All the discussion was focused on the Ramsey test and the subjunctive interpretation of conditionals

BR of non-monotonic KBs
Does Gardenfors’ result prevent the application of an AGM approach to non-
monotonic preferential reasoning?

Preferential conditionals have also other interpretations beyond the subjunctive one. 
Belief change is interesting also in a non-monotonic conditional framework.

!30

Example

We have a knowledge base B containing the following information:

• vertebrate red blood cells have a nucleus ();
• avian red blood cells are vertebrate red blood cells ();
• mammalian red blood cells are vertebrate red blood cells ();
• mammalian red blood cells don't have a nucleus ().

We must conclude that mammalian red blood cells do no exist ().

v → n
a → v

m → v
m → ¬n

m → ⊥

BR of non-monotonic KBs

!31

Case 1.

We know that mammalian red blood cells exist, and we want to enforce such
information (should be contracted).

• In classical monotonic belief change: the contraction of results into
the elimination of some piece of information, for example ;

• It could be preferable to weaken into its defeasible version
(vertebrate red blood cells usually have nucleus).

• The non-monotonic inference machinery will take care of treating m as an
exceptional subclass of v.

v → n

m → ⊥

m → ⊥

v → n v ⇒ n

B′ � = {v ⇒ n, a → v, m → v, m → ¬n}

BR of non-monotonic KBs

!32

Case 2.

Assuming our non-monotonic machinery is well-behaved,

• from B’ we can conclude that avian red blood cells presumably have a
nucleus ()

• But we are informed that avian red blood cells usually do not have a nucleus  
(). Since was a presumptive conclusion, the non-monotonic
entailment relation should take care of eliminating such a conclusion once
faced with conflicting evidence ().

• The introduction of should correspond to a simple addition:

a ⇒ n

B′�′� = {v ⇒ n, a ⇒ ¬n, a → v, m → v, m → ¬n}

B′� = {v ⇒ n, a → v, m → v, m → ¬n}

a ⇒ ¬n a ⇒ n

a ⇒ ¬n

a ⇒ ¬n

BR of non-monotonic KBs

!33

Case 3.

We are then informed that .

But, even in the most trivial non-monotonic reasoning,

We have now a choice:

• If we are interested only in preserving logical consistency (avoid),
then we can simply add to B’’, and conclude .

• If we want to preserve coherence, then we have to ``readjust'' the KB to
avoid .

a ⇒ n

a ⇒ n

B′�′� = {v ⇒ n, a ⇒ ¬n, a → v, m → v, m → ¬n}

B′�′� ⊧ a ⇒ ¬n

⊤ ⇒ ⊥
a ⇒ ⊥

a ⇒ ⊥

As it is intended in the field of logic-based ontologies, a KB is coherent if every
class (i.e., atomic proposition) a that has been introduced in the language can
in principle be populated (we cannot conclude).a ⇒ ⊥

BR of non-monotonic KBs
There are two critical points in modelling belief change for
conditional non-monotonic reasoning:

1. Revising, are we interested in preserving consistency or
coherence?

• We want to add to our KB a conditional . Do we
consider a potential conflict if the addition of
enforces the derivation of (logical inconsistency) or
it is sufficient the derivation of (incoherence)?

This is a contextual issue, associated to the domain we are
modelling.

!34

α ⇒ β
α ⇒ β

⊤ ⇒ ⊥
α ⇒ ⊥

BR of non-monotonic KBs
2. Management of the potential conflicts.

• We have a non-monotonic consequence operator Cn and a
conditional base K. Let . 
We receive the information , that is in conflict with
Cn(K).  
We need to know whether is a necessary or a
defeasible consequence of K. 
In the former case, we have a conflict and we need to
revise the base (Case 3 of the example), in the latter there
is no need of actual revision, since the non-monotonic
machinery will eliminate the conflict (Case 2 of the
example).

!35

α ⇒ ¬β ∈ Cn(K)
α ⇒ β

α ⇒ ¬β

BR for preferential conditionals
This second point is a formal question: given a non-monotonic closure Cn
and a conditional base K, which conditionals in Cn(K) are a necessary
consequence of Cn. Monotonicity gives us the answer.

A closure operator is called the monotonic core of a non-monotonic
closure if, for every conditional base B,B’,

(i) implies ;

(ii) ;

(iii) for every closure operator Cl’ satisfying (i) and (ii), .

Given a non-monotonic entailment relation, the existence of a monotonic
core needs to be proved.

!36

Cl
Cn

B ⊆ B′� Cl(B) ⊆ Cl(B′�)

Cl(B) ⊆ Cn(B)

Cl′�(B) ⊆ Cl(B)

BR for preferential conditionals
We consider the class of supra-preferential cumulative operators Cn:

• Supra-preferential:

➡ Cn is closed under the preferential properties

➡ If a set of conditionals K has a model (), then
(consistency preservation)

• Cumulative:

➡ 

This covers an ample class of non-monotonic operator Cn that are definable using
preferential semantics.

!37

⊤ ⇒ ⊥ ∉ Pr(K) ⊤ ⇒ ⊥ ∉ Cn(K)

if B ⊆ B′� ⊆ Cn(B), then Cn(B′�) = Cn(B)

BR for preferential conditionals

Characterising belief revision for supra-preferential
operators:

1. Model it for the monotonic core (preferential closure Pr).

2. Then model it for the non-monotonic operator Cn.

!38

Proposition [Casini & Meyer (2017)]

Given a supra-preferential closure operator Cn, its monotonic core is
the preferential closure Pr.

Contraction and preferential closure

!39

(−1) K−
α⇒β = Pr(K−

α⇒β)
(−2) K−

α⇒β ⊆ K
(−3) If α ⇒ β ∉ Pr(K), then K−

α⇒β = K
(−4) If α ⇒ β ∉ Pr(∅), then α ⇒ β ∉ K−

α⇒β
(−5) If α ⇒ β ≡Pr α′� ⇒ β′�, then K−

α⇒β = K−
α′ �⇒β′�

(−6) K ⊆ Pr(K−
α⇒β ∪ {α ⇒ β})

(÷ 1) K ÷ α = Cn(K ÷ α)
(÷ 2) K ÷ α ⊆ K
(÷ 3) If α ∉ Cn(K), then K ÷ α = K
(÷ 4) If α ∉ Cn(∅), then α ∉ K ÷ α
(÷ 5) If α ↔ β ∈ Cn(∅), then K ÷ α = K ÷ β
(÷ 6) K ⊆ Cn((K ÷ α) ∪ {α})

Translation of the basic AGM contraction postulates in the conditional framework:

Contraction and preferential closure

!40

Remember the partial meet contraction in AGM belief revision?

The remainder set contains all the maximal subtheories of K that do not contain

  
Working with preferential theories K, we can define the equivalent notion in the
conditional framework:

• is the set of the maximal (preferential) subtheories of K that do not contain

• - is a partial meet contraction operator if it can be defined as  
 
where behaves as in the propositional case:

✦ If , then

✦ If , then

K ⊥ α α
K ÷ α = ⋂γ(K ⊥ α)

K ⊥ (α ⇒ β) α ⇒ β

K−
α⇒β = ⋂γ(K ⊥ (α ⇒ β))

γ

K ⊥ (α ⇒ β) ≠ ∅ ∅ ≠ γ(K ⊥ (α ⇒ β)) ⊆ K ⊥ (α ⇒ β)

K ⊥ (α ⇒ β) = ∅ γ(K ⊥ (α ⇒ β)) = {K}

Contraction and preferential closure

Theorem [Casini & Meyer (2017)]

A contraction operator for preferential entailment Pr satisfies iff it is a partial
meet contraction operator.

!41

Monotonic Core Pr.
Postulates for Contraction

The postulates for contraction are as follows (where refers to
preferential equivalence):

•
•
•
•
•
•

−

≡Pr

(−1) K−
α⇒β = Pr(K−

α⇒β)
(−2) K−

α⇒β ⊆ K
(−3) If α ⇒ β ∉ Pr(K), then K−

α⇒β = K
(−4) If α ⇒ β ∉ Pr(∅), then α ⇒ β ∉ K−

α⇒β
(−5) If α ⇒ β ≡Pr α′� ⇒ β′�, then K−

α⇒β = K−
α′ �⇒β′�

(−6) K ⊆ Pr(K−
α⇒β ∪ {α ⇒ β})

− (−1) − (−6)

(− closure)
(− inclusion)
(− vacuity)
(− success)
(− extensionality)
(− recovery)

Preferential revision

!42

Monotonic Core Pr. Postulates for Revision (consistency
preservation)

The postulates for revision for consistency preservation are as follows:

•
•
•
•
•
•
•

(∙ 1) K∙
α⇒β = Pr(K∙

α⇒β)
(∙ 2) K∙

α⇒β ⊆ Pr(K ∪ {α ⇒ β})
(∙ 3) If ⊤ ⇒ ⊥ ∉ Pr(K ∪ {α ⇒ β}), then Pr(K ∪ {α ⇒ β}) ⊆ K∙

α⇒β
(∙ 4) α ⇒ β ∈ K∙

α⇒β
(∙ 5) If α ⇒ β ≡Pr α′� ⇒ β′�, then K∙

α⇒β = K∙
α′ �⇒β′�

(∙ 6) If ⊤ ⇒ ⊥ ∉ Pr(α ⇒ β), then ⊤ ⇒ ⊥ ∉ Pr(K∙
α⇒β)

(∙ closure)
(∙ inclusion)
(∙ vacuity)
(∙ success)
(∙ extensionality)
(∙ consistency)

∙

(∙ +) K∙
α⇒β = Pr(K∙

⊤⇒α→β ∪ {α ⇒ β}) (∙ extra)

Preferential revision

Theorem [Casini & Meyer (2017)]

A revision operator for preferential entailment Pr satisfies and  
iff it can be defined, via , from a contraction operator satisfying the
postulates

!43

∙ (∙ 1) − (∙ 6)

Levi-style Identity for consistency preservation:

K∙
α⇒β := Pr(K−

⊤⇒α∧¬β ∪ {α ⇒ β})

(∙ +)

(1)

(1)
(− 1) − (− 6)

Preferential revision

!44

Monotonic Core Pr.
Postulates for Revision (coherence preservation)

The postulates for revision for coherence preservation are as follows:

•
•
•
•
•
•

(∘ 1) K∘
α⇒β = Pr(K∘

α⇒β)
(∘ 2) K∘

α⇒β ⊆ Pr(K ∪ {α ⇒ β})
(∘ 3) If α ⇒ ⊥ ∉ Pr(K ∪ {α ⇒ β}), then Pr(K ∪ {α ⇒ β}) ⊆ K∘

α⇒β
(∘ 4) α ⇒ β ∈ K∘

α⇒β
(∘ 5) If α ⇒ β ≡Pr α′� ⇒ β′�, then K∘

α⇒β = K∘
α′ �⇒β′�

(∘ 6) If α ⇒ ⊥ ∉ Pr(α ⇒ β), then α ⇒ ⊥ ∉ Pr(K∘
α⇒β)

(∘ closure)
(∘ inclusion)
(∘ vacuity)
(∘ success)
(∘ extensionality)
(∘ coherence)

∘

Preferential revision

Theorem [Casini et Al. (2018)]

A revision operator for preferential entailment Pr satisfies  
iff it can be defined, via , from a contraction operator satisfying the
postulates

!45

∘ (∘ 1) − (∘ 6)

Levi-style Identity for consistency preservation:

(2)

(2)
(− 1) − (− 6)

K∘
α⇒β := Pr(K−

α⇒¬β ∪ {α ⇒ β})

C

BR for preferential conditionals

!46

We have characterised contraction and revision for the monotonic core.

In order to characterise revision w.r.t. a Cn-theory K, we need to keep track and refer to it’s
monotonic core (Kp):

• We want to add to K. An actual revision needs to be done only if there is a conflict with
the monotonic core Kp.

Revision of a non-monotonic theory would always keep track of the theory and its monotonic
core.

K K’

Kp

K=Cn(Kp)

CK’p

K’=Cn(K’p)

Classical Belief
Change Operation

Non-monotonic Belief
Change Operation

A ⇒ B

BR for preferential conditionals

!47

Non-monotonic Closure Cn. Postulates for Revision (consistency
preservation)

The postulates for revision for consistency preservation are as follows:

•
•
•
•
•
•

(⊙ 1) K⊙
α⇒β = Cn(K⊙

α⇒β)
(⊙ 2) ∃K′� s.t. Cn(K′�) = Cn(K⊙

α⇒β) and K′ � ⊆ Pr(Kp ∪ {α ⇒ β})
(⊙ 3) If ⊤ ⇒ ⊥ ∉ Pr(Kp ∪ {α ⇒ β}), then Cn(Kp ∪ {α ⇒ β}) ⊆ K⊙

α⇒β
(⊙ 4) α ⇒ β ∈ K⊙

α⇒β
(⊙ 5) If α ⇒ β ≡Pr α′� ⇒ β′�, then K⊙

α⇒β = K⊙
α′�⇒β′�

(⊙ 6) If ⊤ ⇒ ⊥ ∉ Pr(α ⇒ β), then ⊤ ⇒ ⊥ ∉ Pr(K⊙
α⇒β)

(⊙ closure)
(⊙ generator inclusion)

(⊙ vacuity)
(⊙ success)
(⊙ extensionality)
(⊙ consistency)

⊙

Given Cn-theory K, we need to keep track and refer to it’s monotonic core
(Kp)

BR for preferential conditionals

!48

Non-monotonic Closure Cn. Postulates for Revision (coherence
preservation)

The postulates for revision for consistency preservation are as follows:

•
•
•
•
•
•

(⊗ 1) K⊗
α⇒β = Cn(K⊗

α⇒β)
(⊗ 2) ∃K′� s.t. Cn(K′�) = Cn(K⊗

α⇒β) and K′� ⊆ Pr(Kp ∪ {α ⇒ β})
(⊗ 3) If α ⇒ ⊥ ∉ Pr(Kp ∪ {α ⇒ β}), then Cn(Kp ∪ {α ⇒ β}) ⊆ K⊙

α⇒β
(⊗ 4) α ⇒ β ∈ K⊗

α⇒β
(⊗ 5) If α ⇒ β ≡Pr α′� ⇒ β′�, then K⊗

α⇒β = K⊗
α′ �⇒β′�

(⊗ 6) If α ⇒ ⊥ ∉ Pr(α ⇒ β), then α ⇒ ⊥ ∉ Pr(K⊗
α⇒β)

(⊗ closure)
(⊗ generator inclusion)

(⊗ vacuity)
(⊗ success)
(⊗ extensionality)
(⊗ coherence)

⊗

Theorem [Casini & Meyer (2017)]

A revision operator for suprapreferential entailment Cn satisfies  
iff there is a preferential revision operator satisfying the postulates
 s.t.

⊗ (⊗ 1) − (⊗ 6)

(∘ 1) − (∘ 6)
∘

K⊗
α⇒β = Cn(Kp

∘
α⇒β

)

BR for preferential conditionals
Theorem [Casini & Meyer (2017)]

A revision operator for suprapreferential entailment Cn satisfies  
iff there is a preferential revision operator satisfying the postulates
 s.t.

!49

⊙ (⊙ 1) − (⊙ 6)

(∙ 1) − (∙ 6)
∙

K⊙
α⇒β = Cn(Kp

∙
α⇒β

)

The semantic characterisation of the above operations will be presented in [Casini et Al. (2018)]

Example
We have the following KB B, that is closed by a supra-preferential closure
operator Cn:

 
 
Let’s consider some new pieces of information:

•

•

•

 

!50

horse ⇒ tall; horse ⇒ black;
horse ⇒ live . in . farm

horse ⇒ ¬(tall ∧ live . in . farm)

horse ∧ black ⇒ ¬tall

horse ∧ brown ⇒ ¬tall

Example
We have the following KB B, that is closed by a supra-preferential closure
operator Cn:

 
 
Let’s consider some new pieces of information:

•

•

•

How do we manage the introduction of each of these pieces of information,
starting from B?

!51

horse ⇒ tall; horse ⇒ black;
horse ⇒ live . in . farm

horse ⇒ ¬(tall ∧ live . in . farm)

horse ∧ black ⇒ ¬tall

horse ∧ brown ⇒ ¬tall

Preferential Properties (defining the
monotonic core):

  
 

New conditionals:

•  

•  

•  
 

Example
Knowledge base B:  
 

!52

horse ⇒ tall; horse ⇒ black;
horse ⇒ live . in . farm

horse ⇒ ¬(tall ∧ live . in . farm)

horse ∧ black ⇒ ¬tall

horse ∧ brown ⇒ ¬tall

ASP
The investigation of non-monotonic contraction in the
conditional framework has to be done.

 
It is instead at the base of the approach to revision for logic
programs in [Zhuang et Al. (2016)].

Disjunctive logic programs are based on rules of the form:

!58

a1; …, am ← b1, …, bn, not c1, …, not c0

ASP
Consider the following program:

•

•

From this we conclude  
We are informed that

•  
that is in conflict with the previous program (no answer set).

!59

Teach(John) ← Prof(John), not Admin(John)
Prof(John) ←

← Teach(John)

{Prof(John), Teach(John)}

ASP
Consider the following program:

•

•

From this we conclude  
We are informed that

•  
that is in conflict with the previous program (no answer set).

We can fix the situation in two ways:

• We eliminate some rule in the program, or

• We add to the program.

!60

Teach(John) ← Prof(John), not Admin(John)
Prof(John) ←

← Teach(John)

{Prof(John), Teach(John)}

Admin(John) ←

ASP
[Zhuang et Al. (2016)] characterise belief change in the
framework of grounded disjunctive logic programs defining
an operator s.t.:

P and Q are two programs, and gives back a
consistent program containing Q.

In case of conflict, either P is weakened, or more rules are
added.

If the latter solution is impossible, it means that the conflict
between P and Q is a monotonic inconsistency.

!61

P ⋆ Q

P ⋆ Q

Essential Bibliography
Preferential conditionals:

• S. Kraus, D. Lehmann, M. Magidor (1990), Nonmonotonic Reasoning, Preferential Models and Cumulative Logics.
Artificial Intelligence, 44, pp. 167-207.

• D. Lehmann, M. Magidor (1992), What Does a Conditional Knowledge Base Entail?. Artificial Intelligence, 55, pp. 1-60

AGM vs. conditionals:

• P. Gärdenfors (1988), Knowledge in Flux. MIT Press (reprinted by College Publications, 2008)

• H. Rott (1989), Conditionals and Theory Change: Revisions, Expansions and Additions. Synthese, 81, pp. 91–113

Revision of Conditional KBs:

• G. Casini, T. Meyer (2017), Belief Change in a Preferential Non-monotonic Framework. Proc. of IJCAI 2017, pp. 929-935

• G. Casini, E. Fermé, T. Meyer, I. Varzinczak (2018), A Semantic Perspective on Belief Change in a Preferential Non-
Monotonic Framework. Proceedings of KR 2018.

Revision in ASP:

• Z. Zhuang, J. Delgrande, A. Nayak, A. Sattar (2016), Reconsidering AGM-Style Belief Revision in the Context of Logic
Programs. Proc. of ECAI 2016, pp. 671-679

!62

BR and Description Logics
Today’s topic

Can we use the AGM approach as a basis to model belief
change in the area of Formal Ontologies?

• We take under consideration the family of Description
Logics, the logical counterpart of the most popular
formalism in the area, the OWL family.

• It is an area in which it is important to properly manage
the dynamics of information.

!64

Preliminaries - Description Logics
DLs represent the logical foundation for the OWL family of
languages, providing them with a formal semantics and
allowing the development of reasoners.

DLs allow the definition of two components of a KB,
corresponding to two kinds of information.

• The TBox, capturing information on a general, conceptual
level.

• The ABox, capturing information about individuals. 

!66

Preliminaries - Description Logics
The statements contained in the TBox are general concept inclusions (GCIs):

 

Read as “the concept C is subsumed by the concept D” (equivalently, the
class C is a subclass of the class D).

C and D are concepts (classes, sets of individuals), that are built from two sets:

• Concept Names

• Role Names

!67

C ⊑ D

𝖭𝒞 := {A1, A2, …}

𝖭ℛ := {r1, r2, …}

Preliminaries - Description Logics
The concepts can be built from and using various
operators. For example:

• Propositional Connectives:

• Logical Constants:

• Quantifiers:

In the DL ALC, for example, concepts can be constructed in
the following way

!68

𝖭𝒞 𝖭ℛ

⊓ , ⊔ , ¬

⊤ , ⊥

C ::= A ∣ (C1 ⊓ C2) ∣ (C1 ⊔ C2) ∣ ¬C ∣ ∃r . C ∣ ∀r . C

∀, ∃, ≥n , ≤n , …

Preliminaries - Description Logics
The Semantics is given by means of interpretations where:

• is a nonempty set (domain);

• is a mapping (interpretation function) defined as follows (in ALC):

!69

ℐ = (Δℐ, ⋅ℐ)

Δℐ

⋅ℐ

NAMES:
concept

role

tautology

contradiction

CONNECTIVES:
conjunction

disjunction

negation

RESTRICTIONS:
existential

universal

A
r
⊤

C ⊓ D
C ⊔ D

¬C

Vehicle
hasPart

⊥

Vehicle ⊓ Red
Vehicle ⊔ Red

¬Vehicle

∃hasPart . Wheel∃r . C

∀hasPart . Metal∀r . C

Aℐ ⊆ Δℐ

rℐ ⊆ Δℐ × Δℐ

⊤ℐ = Δℐ

⊥ℐ = ∅

Cℐ ∩ Dℐ

Cℐ ∪ Dℐ

Δℐ∖Cℐ

{x ∣ ∃y s.t. (x, y) ∈ rℐ

 and y ∈ Cℐ}
{x ∣ ∀y, if (x, y) ∈ rℐ

 then y ∈ Cℐ}

Preliminaries - Description Logics
For example, the expression

indicates the class of the vehicles that have at one wheels. While the
concept inclusion

indicates that Sparrows are Birds.

• An interpretation satisfies a GCI () if

• A TBox is a finite set of GCIs:

• is a model of a TBox if for all the

!70

Vehicle ⊓ ∃ hasPart . Wheel

ℐ ⊨ C ⊑ D Cℐ ⊆ Dℐ

T = {Ci ⊑ Di ∣ 1 ≤ i ≤ n}

ℐ T ℐ ⊨ C ⊑ D C ⊑ D ∈ T

Sparrow ⊑ Bird

Preliminaries - Description Logics
The ABox captures knowledge on an individual level. 
We add to the vocabulary:

• Individual Names

The interpretation function is extended with:

• If , then 
The ABox can contain:

• Concept Assertions: , where if

• Role Assertions: , where if

• An ontology is composed by a TBox and an

ABox

By we indicate either a GCI or an ABox assertion.

𝖭𝒪 := {a, b, c, …}
⋅ℐ

a ∈ 𝖭𝒪 aℐ ∈ Δℐ

C(a) ℐ ⊨ C(a) aℐ ∈ Cℐ

r(a, b) ℐ ⊨ r(a, b) (aℐ, bℐ) ∈ rℐ

𝒪 = (T, A) T
A

α, β, …

• is a model of if is a model of both and

• is consistent if it has a model.

• is coherent if each concept name in is satisfiable w.r.t.
(there is a model of s.t.

• A statement is entailed by an ontology () if every
model of satisfies .

‣ If is inconsistent, we will have

‣ If is incoherent, we will have for some

!72

ℐ 𝒪 = (T, A) ℐ T A

𝒪

𝒪𝒪 A 𝒪
𝒪ℐ ℐ /⊧ A ⊑ ⊥

α 𝒪 ⊨ α𝒪
𝒪 α

Preliminaries - Description Logics

𝒪 ⊨ ⊤ ⊑ ⊥𝒪

𝒪 𝒪 ⊨ A ⊑ ⊥ A

Preliminaries - Description Logics
Exercise:

Let’s try to create a model for the following TBox : 
 
 
 
 
 
 
Let’s add also an ABox : 
 
 
 
Try also to find a counter-model

T

A

T

Rat ⊑ Mammal
Mammal ⊔ Reptile ⊑ Animal

∃hasPet . Python ⊑ ∃hasPet . Rat

Python ⊑ Reptile

Animal ⊑ Mammal ⊔ Reptile

Python(Jimmy)

Python ⊑ ∃ eating . Rat

Rat(Bob) Rat(Karl)A
hasPet(Peter, Jimmy)

BR and Description Logics
Semantic Web and Formal Ontologies are areas in which
managing the dynamics of information is particularly important.

The possibility of occurrence of conflicts is high, due, for
example, to:

• Frequent updating of the information;

• Merging of ontologies;

• Pieces of information from different sources.

!74

BR and Description Logics
Main questions:

• Can we apply the AGM approach to Description Logics
(DLs)?

‣ DLs have different expressivity w.r.t. Propositional Logic

‣ We need to take under consideration not only the
preservation of Consistency, but also the preservation of
Coherence.

!75

BR and Description Logics
A lot of work has been dedicated to define and implement
procedures for debugging ontologies, that is, modifying
ontologies that result inconsistent or incoherent.

Most of the work has been dedicated to the definition of
specific procedures for debugging.

Some of the proposed procedures are often in line with a
Base Revision approach [see, e.g., Horridge et Al. (2009)].

!76

BR and Description Logics
However, the works in ontology debugging usually lack
the kind of analysis in line with the Belief Revision
approach, defining the desired properties that a change
procedure should satisfy and characterising the classes of
procedures satisfying them.

First step to develop such an analysis in the DL
framework: check whether the AGM operations can be
modelled inside the DL framework.

!77

AGM Compliance
As we saw yesterday, AGM made some assumptions about the
underlying logic :

• Language: closed under propositional operators.

• Consequence operator:

1. Tarskian

• Monotonicity: if then

• Idempotence:

• Inclusion:

!78

⟨L, Cn⟩

A ⊆ B Cn(A) ⊆ Cn(B)

Cn(A) = Cn(Cn(A))

A ⊆ Cn(A)

AGM Compliance
2.AGM Assumptions:

• Deduction: iff

• Supraclassicality: if then

• Compactness: if , then for some
finite

• Disjunction in the premises: ___________________

!79

(α → β) ∈ Cn(A)β ∈ Cn(A ∪ {α})

α ∈ Cl(A) α ∈ Cn(A)

α ∈ Cn(A) α ∈ Cn(A′�)
A′� ⊆ A

γ ∈ Cn(A ∪ {α}) γ ∈ Cn(A ∪ {β})
γ ∈ Cn(A ∪ {α ∨ β})

AGM Compliance
Are all the above conditions necessary to define a
contraction operator satisfying the six basic AGM
postulates, or just sufficient?

Once we assume a Tarskian consequence operator, what
are the necessary conditions for AGM contraction?

➡ Notion of AGM Compliance [Flouris et Al. (2005)]

!80

Remember the basic AGM postulates?

AGM Compliance

!81

 (Closure)
(Inclusion)

(Vacuity)
(Success)

(Extensionality)
(Recovery)

(÷ 1) K ÷ α = Cn(K ÷ α)
(÷ 2) K ÷ α ⊆ K
(÷ 3) If α ∉ Cn(K), then K ÷ α = K
(÷ 4) If α ∉ Cn(∅), then α ∉ K ÷ α
(÷ 5) If α ↔ β ∈ Cn(∅), then K ÷ α = K ÷ β
(÷ 6) K ⊆ Cn((K ÷ α) ∪ {α})

AGM Compliance
Note:

Once we assume a Tarskian consequence operator Cn, defining a contraction operator that
satisfies is not problematic:

Let K be a Cn-theory. Let be a contraction operator s.t., for every non-tautological , is s.t.:

• If , then

• Otherwise

•

•

•

It is easy to prove that any contraction satisfying these properties satisfies , and that a
contraction operator like that is always definable if Cn is Tarskian.

The potential problems rise if we consider also

!82

(÷ 1) − (÷ 5)

÷ α K÷
α

K÷
α ⊂ K

K÷
α = K

α ∉ K

K÷
α = Cn(K÷

α)

α ∉ K÷
α

(÷ 1) − (÷ 5)

(÷ 6)

AGM Compliance
A logic is AGM-compliant if it is possible to define for it a contraction
operation satisfying the six AGM postulates. 
 
Let be two sets of formulas in the logic s.t.  
and 
 
Given a set of formulas A, let be defined as 
 

 is decomposable if, for every , .

Theorem [Flouris et Al. (2006)]

A logic is AGM-compliant iff it is decomposable.

!83

⟨L, Cn⟩

A, K ⟨L, Cn⟩

⟨L, Cn⟩ A, K

K−(A) := {K′� ∣ Cn(K′ �) ⊂ Cn(K) and Cn(K′ � ∪ A) = Cn(K)}

K−(A) ≠ ∅

K = Cn(K)
Cn(∅) ⊂ Cn(A) ⊂ K

⟨L, Cn⟩

K−(A)

AGM Compliance
A logic is AGM-compliant if it is possible to define for it a contraction
operation satisfying the six AGM postulates. 
 
Let be two sets of formulas in the logic s.t.  
and 
 
Given a set of formulas A, let be defined as 
 

 is decomposable if, for every , .

Theorem [Flouris et Al. (2006)]

A logic is AGM-compliant iff it is decomposable.

!84

⟨L, Cn⟩

A, K ⟨L, Cn⟩

⟨L, Cn⟩ A, K

K−(A) := {K′� ∣ Cn(K′ �) ⊂ Cn(K) and Cn(K′ � ∪ A) = Cn(K)}

K−(A) ≠ ∅

K = Cn(K)
Cn(∅) ⊂ Cn(A) ⊂ K

⟨L, Cn⟩

K−(A)
Note: These are proper

subset relations!

AGM Compliance
Most of the DLs are not AGM-compliant!

➡Another problem is the relation between Contraction and
Revision: the expressivity of the language not always
allows to re-formulate Levi’s Identity. 
We cannot express the negation of a GCI (we had an
analogous problem with the conditionals yesterday).

This limits should not prevent from applying an AGM-like
approach in the DL framework.

!85

BR in Description Logics
Not a lot of work has been done in analysing belief change in DLs from the point of
view of the AGM approach.

Two relevant exceptions:

• Ribeiro, Wassermann (2008), Base Revision for Ontology Debugging, Journal of
Logic and Computation, 19 (5), pp. 721-743.

This paper analyses belief change for expressive DLs like SHIF and SHOIN, in the
framework of Base Revision.

• Zhuang, Wang, Wang, Qi (2016), DL-Lite Contraction and Revision, JAIR, 56, pp.
329-378.

This paper deals with theory change for the DL-Lite family, a family of low-
complexity DLs.  
We will focus on this paper, as a representative example of the problem.

!86

DL-Lite
The DL-Lite family is a family of DLs with constrained expressivity and in which the decision
problems are computationally feasible.

We introduce , the simplest logic in the family.

The vocabulary is composed by:

• A finite set of Atomic Concepts, that we indicate using

• A finite set of Atomic Roles, that we indicate using

• The negation operator

• The role inversion function

• The logical constants

• The quantifier

!87

DL − Litecore

¬
⋅−

⊤ , ⊥

∃

A1, A2, …

P1, P2, …

The TBox can contain the
following kinds of Inclusions:

The ABox can contain the
following kinds of statements:

DL-Lite
We can build:

• Basic Concepts:

• General Concepts:

• Basic Roles:

!88

B → A ∣ ∃R

C → B ∣ ¬B

R → P ∣ P−

B ⊑ C B ⊑ ⊥⊤ ⊑ C

A(a) P(a, b)

Preliminaries - Description Logics
Exercise:

The ontology specified before is a ontology? 
 
 
 
 
 
 
 
 
 
 

T Rat ⊑ Mammal
Mammal ⊔ Reptile ⊑ Animal

∃hasPet . Python ⊑ ∃hasPet . Rat

Python ⊑ Reptile

Animal ⊑ Mammal ⊔ Reptile

Python(Jimmy)

Python ⊑ ∃ eating . Rat

Rat(Bob) Rat(Karl)A
hasPet(Peter, Jimmy)

DL − Litecore

AGM Compliance

The DL-Lite family not AGM-compliant!

!90

Example

Consider a DL-Lite TBox .
Let . is a TBox s.t. .

Is there a DL-Lite TBox s.t. and ?

Let’s try to find one!

T = { ⊤ ⊑ ¬A1}
T' = {A2 ⊑ ¬A1} T' Cn(T') ⊂ Cn(T)

T* Cn(T*) ⊂ Cn(T) Cn(T' ∪ T*) = Cn(T)

DL-Lite
Issues that need to be taken under consideration:

• Not AGM-compliant: how do we deal with the impossibility of satisfying
the six basic AGM postulates?

• No proper negation: we cannot use Levi’s Identity

• Consistency vs. Coherence: we need to consider the satisfaction of both
these constraints.

• Implementability: Each consistent DL ontology has infinite models; that is a
problem in order to have implementable semantic-based procedures.

• Multiple revision tasks: revision of the TBox, of the ABox alone (keeping a
background TBox fixed), or of the TBox+ABox?

!91

ct-type semantics
The first issue that Zhuang and others address is the
semantics.

We want the semantics to be succinct, that is, the models
should be finite and avoid the redundancy of information,
in order to help w.r.t. computational efficiency.

• ct-type semantics (Core TBox type semantics).

!92

ct-type semantics
The ct-types are a kind of finite, succinct interpretations
appropriate for the TBoxes.

• Let be the (finite) set of basic concepts: 

• Let be the power set of  
 
 can be interpreted like a set of propositional
valuations 

!93

DL − Litecore

ℬ

ℬ := {A1, …, An, ∃P1, …, ∃Pm, ∃P−
1 , …, ∃P−

m}
Ωt

c ℬ

Ωt
c

ct-type semantics
Let be a TBox.

An element v of is a propositional model of if
for every

Let be the set of propositional models of
(). 
 accounts for most of the inclusions enforced by in  
 , apart from  
 
 _________ _________

!94

DL − LitecoreT

Ωt
c T v ⊧ ¬C ∨ D

C ⊑ D ∈ T

∥ T ∥t
c

∥ T ∥t
c⊆ Ωt

c

T∥ T ∥t
c

∃R ⊑ ⊥
∃R ⊑ ⊥∃R− ⊑ ⊥

∃R− ⊑ ⊥

T

DL − Litecore

ct-type semantics

Let be set of ct-models of a TBox

 if for every .

ct-types semantics is succinct, every TBox has a finite number of models, and it gives the
correct characterisation of DL-entailment.

!95

A ct-type is a ct-model of a TBox if

1.
2. If then

τ T

τ ∈∥ T ∥t
c

T ⊧ ∃r ⊑ ⊥ ∃r ∉ τ

Theorem [Zhuang et Al.(2016)]

Let be a TBox, and a inclusion 

T ⊧t
c B ⊑ C τ ⊧ ¬B ∨ C τ ∈ |T |t

c

T

T DL − Litecore B ⊑ C DL − Litecore

T ⊧t
c B ⊑ C iff T ⊧ B ⊑ C

|T |t
c

ct-type semantics
ct-types give us an alternative semantics for TBox reasoning in
the simplest :

Slightly more complex semantical structures are defined for a
more expressive (), and to characterise ABox
reasoning, but we will not introduce them.

Since we consider only ct-types we will describe only the
operators for TBox changes in .

Belief change for the ABox or for the entire ontology can be
defined analogously, referring to the dedicated semantic
constructions.

!96

DL − LitecoreDL − Lite

DL − Lite DL − LiteR

DL − Litecore

ct-type semantics
Problem: 
Under ct-type semantics, we lose the bijection between
sets of interpretations and TBoxes

!97

Let M be a set of ct-types. is a corresponding TBox for M iff  

•
• there is no TBox s.t.

T

M ⊆ |T |t
c

M ⊆ |T' |t
c ⊆ |T |t

cT'

ct-type semantics

An operator is introduced, s.t. it takes as input a set of
ct-types M

!98

𝒯

𝒯(M) = • the closure of the corresponding TBox  
 (), if M is coherent;

• otherwise

T

T⊥

Cn(T)

If M is coherent (for every atomic A, for some
), then the corresponding TBox for M is unique.

v /⊧ A ⊑ ⊥
v ∈ M

Contraction
The authors define a contraction operator using ct-interpretations and a choice
function.

Let be a set of inclusion statements .

• indicates the ct-models of A

•

Let be a choice function over the ct-interpretations s.t.

• If , then

 where .  
 is faithful w.r.t. iff

• If , then

!99

⌅

γ

γ

B ⊑ C

|ϕ |t
c

|¬ϕ |t
c := Ωt

c∖|ϕ |t
c

M ⊆ Ωt
c

T

M ≠ ∅ ∅ ⊆ γ(M) ⊆ M

|T |t
c ∩ M ≠ ∅ γ(M) = |T |t

c ∩ M

ϕ

Contraction
A contraction operation is defined using ct-models. Let
be a TBox and be a set of inclusion statements

 is T-contraction operator if it can be defined as

 
where is faithful w.r.t.

What about the postulates? 
 is not AGM compliant, recovery cannot be saved

!100

⌅

T ⌅ ϕ := 𝒯(|T |t
c ∪ γ(|¬ϕ |t

c))

T

T

DL − Litecore

⌅

γ

(⌅ 6) T ⊆ Cn((T ⌅ ϕ) ∪ {ϕ})

ϕ

Contraction
 are just translated in the intuitive way:

 

!101

(⌅ 1) T ⌅ ϕ = Cn((T ⌅ ϕ)

(⌅ 1) − (⌅ 5)

(⌅ 2) T ⌅ ϕ ⊆ T
(⌅ 3) If T /⊧ ϕ, then T ⌅ A = T

(⌅ 5) If ϕ ≡ ψ, then T ⌅ ϕ = T ⌅ ψ
(⌅ 4) If ∅ /⊧ ϕ for some B ⊑ C ∈ ϕ, then T ⌅ ϕ /⊧ ϕ

Contraction
The postulate of Disjunctive Elimination is added

 
That in the propositional version was 
 
 
 
 
 
 
 
The authors also specify a computationally tractable procedure
implementing T-contractions.

!102

(⌅ − de) If T ⊧ ψ and |T ⌅ ϕ |t
c ⊆ |ϕ |t

c ∪ |ψ |t
c , then T ⌅ ϕ ⊧ ψ

If ψ ∈ K and ϕ ∨ ψ ∈ K ÷ ϕ, then ψ ∈ K ÷ ϕ

Theorem [Zhuang et Al. (2016)]

 is a T-contraction operator for a TBox iff satisfies and ⌅ T ⌅ (⌅ 1) − (⌅ 5)
(⌅ − de)

Revision
We will skip the characterisation of the T-revision operators  
 . We just mention two important points:

• Since there is not the possibility of using Levi’s Identity, the
revision operators are defined independently, using another
kind of semantic choice function.

• The operators are defined with the goal of preserving
coherence, instead of consistency.

Also for revision the authors propose a procedure implementing
T-revision operators and working in polynomial time.

!103

*

Essential Bibliography
• G. Flouris, D. Plexousakis, G. Antoniou (2005), On Applying the AGM Theory to DLs and OWL. Proc.

Of ISWC 2005, LNCS 3729, pp. 216-231

• G. Qi, F. Yang (2008), A survey of Revision Approaches in Description Logics. Proc. of RR 2008,
LNCS 5341, pp. 74-88

• M. Horridge, B. Parsia, U. Sattler (2009), The OWL Explanation Workbench: A Toolkit for Working
with Justifications for Entailments in OWL Ontologies. Technical Report [url: https://tinyurl.com/
yau48d37]

• M. M. Ribeiro, R. Wassermann (2009), Base Revision for Ontology Debugging. , Journal of Logic and
Computation, 19 (5), pp. 721-743

• M. M. Ribeiro, R. Wassermann, G. Flouris, G. Antoniou (2013), Minimal Change: Relevance and
Recovery Revisited. Artificial Intelligence, 201, pp. 59-80

• Z. Zhuang, Z. Wang, K. Wang, G. Qi (2016), DL-Lite Contraction and Revision. JAIR, 56, pp.329-378

!104

Ex Falso Quodlibet

A principle of classical logic:

Ex Falso Quodlibet (EFQ):

↵ ¬↵
�

From a contradiction we can conclude any formula.

3 / 12

Ex Falso Quodlibet

The classical notion of consequence relation enforces this

principles also for modern logic.

From Lecture 1:

4 / 12

Ex Falso Quodlibet

Such a condition is equivalent to:

‘The set of the models of the premises (kKBk) is a subset of the

set of models of the consequence (k↵k)’, that is:

kKBk ✓ k↵k

Assume there is a contradiction in our premises, and we want

to check whether

A [{↵,¬↵} |= �

for some formula �.

5 / 12

Ex Falso Quodlibet

A [{↵,¬↵} |= � holds if and only if

kA [{↵,¬↵}k ✓ k�k. (1)

The contradiction in the premises implies that A [{↵,¬↵} has

no model, that is kA [{↵,¬↵}k = ;.

Condition (1) is trivially satisfied, since ; ✓ k�k for any set k�k.

A [{↵,¬↵} |= �

holds for any �.

6 / 12

Ex Falso Quodlibet

We need to avoid this “explosion”.

Two possible strategies:

I Avoiding contradictions) Belief Change.

I Avoiding the EFQ rule) Paraconsistent Logics.

When we have to deal with huge knowledge bases, with pieces

of information coming from different sources, the presence of

contradiction is highly probable, and repairing the KB could be

impossible.

Paraconsistent reasoning can then be a possible solution.

7 / 12

Paraconsistent Logics

Many proposals. Some are very close to belief change:

I Systems that allow conjunction only if consistent

[Rescher and Manor, 1970].

Given a knowledge base KB, let KB
⇤

be the set of all the maximal

consistent subsets of KB. That is

KB
⇤ = {A ✓ KB | for every B s.t. A ⇢ B ✓ KB, B |= ?}

KB |= ↵ if and only if A |= ↵, for every A ✓ KB
⇤.

8 / 12

Paraconsistent Logics

Particularly relevant is the many-valued (MV) approach:

I Connection with the MV approach that has developed into the fuzzy

logics.

I The most popular in computer science.

Originally proposed by Asenjo [Asenjo, 1966], who introduced a

propositional logic with 3 possible truth values: True (t), False (f), and

Both (b).

Very close to the Kleene and Łukasiewicz’s original systems with 3

truth values.

9 / 12

Paraconsistent Logics

The notion of consequence relation can be reformulated as KB |= ↵ if

and only if, for every interpretation I,

If every formula in KB is either t or b, then ↵ is either t or b.

We can avoid EXQ. For example, the contradiction is a consequence

of the KB:

↵ ^ ¬↵,� |= ↵ ^ ¬↵

but we do not have explosion, since

↵ ^ ¬↵,� 6|= ¬�

10 / 12

Paraconsistent Logics

I Various proposals in this line, using 3 (true, false, both) or 4 (true, false,

both, neither) true value.

I From the semantical side, for example we can use a two interpretation

functions, one to determine truth, and one falsehood.

I we have already seen an example last week with ⇢df
¬
?

[Straccia and Casini, 2022].

⇢df¬? interpretation:

I = h�R,�DP ,�C,�L,P
+[[·]],P�[[·]],C+[[·]],C�[[·]], ·Ii

Some constraints:

I for domain element t , there is unique complement ¬t (¬¬t is t)

I C
+[[·]] and C

�[[·]] are functions �C ! 2
�R with C

+[[¬c]] = C
�[[c]]

I P
+[[·]] and P

�[[·]] are functions �DP ! 2
�R⇥�R with P

+[[¬p]] = P
�[[p]]

I ·I maps each t 2 UL \ V , that is not of the form ?c , into a value

t
I 2 �R [�DP , such that (¬t)I = ¬t

I

11 / 12

4-Valued Intentional Semantics for ⇢df¬?

We will have:

I P
+[[]] and C

+[[]]
I Positive extensions of P[[]] and C[[]]

I P
�[[]] and C

�[[]]
I Negative extensions of P[[]] and C[[]]

I C
+[[c]] denotes the set of resources known to be instances of class c

I C
�[[c]] denotes the set of resources known not to be instances of class

c

I Positive and negative extensions need not to be the complement of

each other

I r /2 C+[[c]] does not imply necessarily that r 2 C�[[c]]
I C�[[c]] is not enforced to be �R \ C+[[c]]

12 / 12

Bibliography
Asenjo, F. G. (1966).

A calculus of antinomies.

Notre Dame J. Formal Logic, 7(1):103–105.

Rescher, N. and Manor, R. (1970).

On inferences from inconsistent premises.

Theory and Decision, 1(2):179–217.

Straccia, U. and Casini, G. (2022).

A minimal deductive system for RDFS with negative statements.

In Kern-Isberner, G., Lakemeyer, G., and Meyer, T., editors, Proceedings of the 19th International Conference

on Principles of Knowledge Representation and Reasoning, KR 2022, Haifa, Israel, July 31 - August 5, 2022.

12 / 12

	Classical Logics and Knowledge Representation and Reasoning (KRR)
	Propositional Logic
	First-Order Logic

	Introduction to Semantic Web Languages (SWLs)
	Resource Description Framework Schema (RDFS)
	Description Logics
	Logic Programs

	Uncertainty and Fuzzyness in Logics
	Uncertainty vs. Vagueness: a clarification
	Probability & Propositional Logic
	Fuzzyness & Propositional Logic

	Uncertainity & Fuzzyness in Semantic Web Languages
	RDFS
	Description Logics
	Logic Programs

	End
	PhDAI.casini.part4.pdf
	Nonmonotonic and Conditional Reasoning
	Nonmonotonic Reasoning

	End

	PhDAI.casini.part5.pdf
	End

	PhDAI.casini.part6.pdf
	End

