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Abstract

We outline SoftFacts, an ontology mediated top-k information retrieval sys-
tem over relational databases. An ontology layer is used to define (in terms of a
tractable DLR-Lite like description logic) the relevant abstract concepts and rela-
tions of the application domain, while facts are stored into a relational database.
The results of a query may be ranked according to some scoring function. We will
illustrate its logical model, its architecture, its representation and query language,
the reasoning algorithms and the experiments we conducted.

1 Introduction
Description Logics (DLs) [2] provide popular features for the representation of struc-
tured knowledge. Nowadays, DLs have gained even more popularity due to their ap-
plication in the context of the Semantic Web. DLs play a particular role as they are
essentially the theoretical counterpart of state of the art languages to specify ontolo-
gies, such as OWL DL [16]. It becomes also apparent that in these contexts, data are
typically very large and dominate the intentional level of the ontologies. Hence, while
in the above mentioned contexts one could still accept reasoning that is exponential on
the intentional part, it is mandatory that reasoning is polynomial in the data size, i.e. in
data complexity [31]. Recently efficient management of large amounts of data and its
computational complexity analysis has become a primary concern of research in DLs
and in ontology reasoning systems [1, 5, 8, 10, 15, 17].

In this paper, we describe the salient features of the SoftFacts system 1, whose
aim is to allow an ontology mediated access to relational databases for data intensive
applications. Informally, data is stored into a database and a DL is used to define the

1See, http://www.straccia.info/software/SoftFacts/SoftFacts.html

1



Figure 1: Architecture.

relevant abstract concepts and relations of the application domain. Main features of the
SoftFacts system are:

1. The SoftFacts ontology language belongs to the family of DLR-Lite [6]. DLR-
Lite is different from usual DLs as it supports n-ary relations (n > 1), whereas
DLs support usual unary relations (called concepts) and binary relations (called
roles);

2. A SoftFacts query is the union of conjunctive queries;

3. The results of a query may be ranked according to some scoring function. In
fact, SoftFacts supports Top-k Query Answering [23, 27, 25, 26, 28], (find top-k
scored tuples satisfying query), e.g. “find cheap hotels close to the train station”,
where cheap and price are an user defined function of the distance and price,
respectively.

In the following, we will illustrate SoftFacts’s logical model, its architecture, its rep-
resentation and query language, the reasoning algorithms and the experiments we con-
ducted.

2 The architecture
The SoftFacts architecture has two basic components: the DL-based ontology compo-
nent and the database component (see Figure 1).

The DL-component supports both the definition of the ontology and query answer-
ing. In particular, it provides a logical query and representation language, which is an
extension of the DL language DLR-Lite [6, 25, 27, 29] and support ranking queries.
Concerning the database component, SoftFacts supports access to various different
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database systems. The access to these systems is transparent as managed by an ap-
propriate wrapper.

Operationally, a user submits a conceptual query (a Datalog like logic-based con-
junctive query) by means of the DL-component. The DL-component will then use the
ontology to reformulate the initially query into one or several queries (query expan-
sion) 2. These queries are then translated and submitted to the underlying database
system (using the wrapper). The database system then provides back the top-k answers
for each of the issued queries. The ranked lists will then be merged into one final result
list and displayed to the user (using the the query evaluation module).

3 The query and representation language
For computational reasons, the particular logic SoftFacts adopts is based on an exten-
sion of the DLR-Lite [6] Description Logic (DL) [2] without negation. The DL will
be used in order to define the relevant abstract concepts and relations of the appli-
cation domain. On the other hand, conjunctive queries will be used to describe the
information needs of a user and rank the answers according to a scoring function. The
SoftFacts logic extends DLR-Lite by enriching it with build-in predicates. Conjunctive
queries are enriched with scoring functions that allow to rank and retrieve the top-k
answers.

To start with, as e.g., answers to a query are scored according to some scoring
function, tuples may have associated a score. We will call the score also truth degree,
or simply degree. Hence we have to fix a truth-space. We will consider as truth-
space the set [0,>], where > > 0 is a sufficiently large number (maximal machine
representable number). 0 denotes false, while > indicates true 3.

A knowledge base K = 〈F ,O,A〉 consists of a facts component F , an Ontology
component (also called, DL component)O and an abstraction componentA, which are
defined below.

Facts Component. SoftFacts allows to store so-called graded ground facts such as
“the Audi TT is to some degree (e.g., 0.85) a sports car”. Indeed, F is a finite set of
expressions of the form

R(c1, . . . , cn)[s] ,

where R is an n-ary relation, every ci is a constant, and s is a degree of truth (or score)
in [0,>] indicating to which extent the tuple 〈c1, . . . , cn〉 is an instance of relation R.
For instance, given a relation SportsCar with signature SportsCar(carID,Name,Speed),

SportsCar(2,AudiTT, 210)[0.85] .

is a fact, dictating to which extent the tuple 〈2,AudiTT, 210〉 is an instance of SportsCar
(hence, to which extent the Audi TT is a sports car).

2Cyclic definitions may be present in the DL-component as well.
3One might wonder why not necessary > = 1. This is due to the fact that we may use aggregation

functions (e.g., the sum) that yield a score above 1.0.
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Profile
profID FirstName LastName Genre BirthDate CityOfBirth Address City ZipCode Country . . .

2 Wayne Hernandez female 1979-10-04 Berlin Via Volta Terni 05100 Italy . . .
34 Hillary 156 Gadducci female 1978-01-27 Bangalore Church ST New York 10027 USA . . .
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Figure 2: The profile table.

For each R, we represent the facts R(c1, . . . , cn)[s] in F by means of a relational
n+1-ary table TR, containing the records 〈c1, . . . , cn, s〉. We assume that there cannot
be two records 〈c1, . . . , cn, s1〉 and 〈c1, . . . , cn, s2〉 in TR with s1 6= s2 (if there are,
then we remove the one with the lower score). Each table is sorted in descending order
with respect to the scores. For ease, we may omit the score component and in such
cases the value 1 is assumed.

Example 1 Suppose we have Curricula Vitæ. Some basic information is stored into
the Profile relation and an excerpt is shown in Fig. 2. Here, the score is implicitly
assumed to be 1 in each record. For instance,

Profile(2,Wayne,Hernandez, female, 1979− 10− 04,Berlin,ViaVolta,Terni, 05100, Italy, . . .) ,

corresponds to the fact related to the first record. 2

Ontology Component. The ontology component is used to define the relevant ab-
stract concepts and relations of the application domain by means of axioms.

But, before we address the syntax of axioms, let us introduce the notion of con-
crete domains. In fact, SoftFacts supports concrete domains with specific predicates
on it. The concrete predicates that SoftFacts allows are relational predicates such
as ([i] 6 1500) (e.g. the value of the i-th column is less or equal than 1500) and
([i] = “Mayer′′) (e.g. the value of the i-th column is equal to the string “Mayer”).
Formally, a concrete domain in SoftFacts is a pair 〈∆D ,ΦD〉, where ∆D is an inter-
pretation domain and ΦD is the set of domain predicates d with a predefined arity n
and an interpretation dD : ∆n

D → {0, 1}.
Now, SoftFacts allows to specify an ontology by relying on axioms. Consider an al-

phabet of n-ary relation symbols (denoted R), e.g. Profiles as described in Table 2, and
an alphabet of unary relations, called atomic concepts (and denotedA), e.g. ItalianCity.
Now, the DL component O is a finite set of axioms having the form

(Rl1 u . . . uRlm v Rr)[n]

where m > 1, all Rli and Rr have the same arity and where each Rli is a so-called
left-hand relation and Rr is a right-hand relation, and n is a truth degree assigning a
“weight” to the axiom. For ease, we may omit the value n and in such cases the value
n = 1 is assumed. As illustrative purpose, a simple ontology axiom may be of the form

ItalianCity v EuropeanCity

with informal reading “any italian city is an european city”. Here ItalianCity and
EuropeanCity are unary relations with signature ItalianCity(id) and EuropeanCity(id),
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respectively. Similarly, the ontology axiom

ItalianCity u BigCity v BigEuropeanCity

has informal reading “any italian city, which is also big, is a big european city” (here
BigCity and BigEuropeanCity are again unary relations with signature BigCity(id) and
BigEuropeanCity(id), respectively).

We may also involve n-ary realtions in ontology axioms. For instance, suppose that
from the profiles records, we would like to extract just the profile ID and the last name,
and call this new relation HasLastName with signature HasLastName(profID, LastName).
In database terminology this amounts in a projection of the Profile relation on the first
and third column. In our language, the projection of an n-ary relationR on the columns
i1, . . . , ik (1 6 i1, i2, . . . , ik 6 n, 1 6 i 6 n), will be indicated with ∃[i1, . . . , ik]R.
Hence, e.g.

∃[1, 3]Profile

is the binary relation that is the projection on the first and third column of the Profile
relation. So, for instance, the axioms

∃[1, 3]Profile v ∃[1, 2]HasLastName

∃[1, 4]Profile v ∃[1, 2]HasGenre

∃[1, 2]Profile v ∃[1, 2]HasFirstName

state, e.g., that the relation HasLastName contains the projection of the Profile relation
on the first and third column (the other axioms are interpreted similarly).

In case of a projection, we may further restrict it according to some conditions,
using concrete predicates. For instance,

∃[1, 5]Profile.(([5] > 1979))

corresponds to the set of tuples 〈profID,BirthDate〉 such that the fifth column of the re-
lation Profile, i.e. the person’s birth date, is equal or greater than 1979. Other examples
of axioms are

∃[1, 5]Profile v ∃[1, 2]hasBirthDate

∃[1, 4]Profile v ∃[1, 2]hasSex

∃[3, 2, 6]Profile.(([5] 6 1991) u ([4] = male))
v ∃[1, 2, 3]AdultMalePerson

Note that in the last axiom, we have multiple conditions: we require that the age is
greater or equal than 18 (w.r.t. year 2009) and the gender is male. This axiom defines
the relation AdultMalePerson(LastName,FirstName,CityOfBirth).

Another feature of axioms is that a degree n ∈ [0, 1] may be attached to the inclu-
sion Rl1 u . . . u Rlm v Rr. For instance, the degree n in a inclusion axiom may be
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computed automatically by an ontology alignment tool [11], indicating to what extend
a concept/relation of an ontologyO1 has the same meaning of another concept/relation
of ontology O2. Examples of such axioms, called ontology mappings, may be

(SportyCar v SportsCar)[0.97]
(∃[1, 2]HasInvoice v ∃[1, 2]HasPrice)[0.64] ,

where the signatures of the atomic concepts and the relations are SportyCar(CarID),
SportsCar(CarID), HasInvoice(CarID,Price) and HasPrice(CarID,Price), respectively.
Informally, the former axiom states that the concept SportyCar of ontology O1 has the
same meaning of the concept SportsCar of ontologyO2 with degree 0.97 (the informal
meaning of the latter axiom is similar).

In general and informally, an axiom (Rl1 u . . . uRlm v Rr)[n] states that if c
is an instance of Rli to degree si, then c is an instance of Rr to degree at least
n ⊗ s1 ⊗ . . . ⊗ sl, where ⊗ is a so-called t-norm that combines the score/truth of the
“conjunctive” expression in the left-hand side of the axiom 4 (see [14]). Some typical
t-norms are

x⊗ y = min(x, y) Gödel conjunction
x⊗ y = max(x+ y − 1, 0) Łukasiewicz conjunction
x⊗ y = x · y Product conjunction .

So, for instance, if an Audi TT has been classified as a SportyCar to degree 0.85, i.e. we
have the fact SportyCar(AudiTT)[0.85], and we ask about the instances of SportsCar,
then we may retrieve the Audi TT with degree 0.97 ⊗ 0.85 = 0.82 (if we use product
t-norm).

The exact syntax of the relations appearing on the letf-hand and right-hand side of
ontology axioms is specified below (where h > 1):

Rr −→ A | ∃[i1, . . . , ik]R

Rl −→ A | ∃[i1, . . . , ik]R |
∃[i1, . . . , ik]R.(Cond1 u . . . u Condh)

Cond −→ ([i] 6 v) | ([i] < v) | ([i] > v) | ([i] > v) |
([i] = v) | ([i] 6= v)

where A is an atomic concept, R is an n-ary relation with 1 6 i1, i2, . . . , ik 6 n,
1 6 i 6 n and v is a value of the concrete interpretation domain of the appropriate
type.

Here ∃[i1, . . . , ik]R is the projection of the relationR on the columns i1, . . . , ik (the
order of the indexes matters). Hence, ∃[i1, . . . , ik]R has arity k. On the other hand,
∃[i1, . . . , ik]R.(Cond1 u . . . u Condl) further restricts the projection ∃[i1, . . . , ik]R
according to the conditions specified in Condi. For instance, ([i] 6 v) specifies that
the values of the i-th column have to be less or equal than the value v.

4Given truth degrees x and y, the conjunction of x and y is x ⊗ y. ⊗ has to be symmetric, associative,
monotone in its arguments and such that x⊗ 1 = x.
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Legislators v Legal Support Workers (1)
Auditors v Accountants and Auditors (2)

Bakers v Food Processing Workers (3)
∃[2]knowsLanguage v Language (4)

∃[2]hasDegree v Degree (5)

Figure 3: Excerpt of a CV ontology.

The syntax is inspired by the description logic DLR-Lite [6], a LogSpace data com-
plexity family of DL languages, but still with good representation capabilities. We
recall that despite the simplicity of its language, the DL component is able to capture
the main notions (though not all, obviously) to represent structured knowledge. For
instance, the axioms allow us to specify subsumption, concept A1 is subsumed by con-
cept A2, using A1 v A2; typing, using ∃[i]R v A (the i-th column of R is of type
A); and participation constraints, using A v ∃[i]R (all instance of A occur in the
projection of R on the i-th column).

Example 2 (Example 1 cont.) Consider again Example 1. An excerpt of the domain
ontology is described in Fig. 3 and partially encodes an ontology used to describe Cur-
ricula Vitæ. We assume that we have a relation HasDegree(profID, degID,Marks) and
an atomic concept Degree(degID). For instance, axiom (4) states that the languages
known by profile profID should be languages. 2

Finally, we assume that relations occurring in F do not occur in axioms (so, we do not
allow that database relation names occur in O.

Abstraction Component. The abstraction component is a set of “abstraction state-
ments” that allow to connect atomic concepts and relations to physical relational tables.
Essentially, this component is used as a wrapper to the underlying database and, thus,
prevents that relational table names occur in the ontology. As illustrative purpose, as-
sume that we have a relation Jobs in a database with signature Jobs(jobID,Name[string]),
where the first column is of type int, while the second is of type String. Then, an ex-
ample of abstraction statement is

jobName 7→ Jobs(jobID[int],Name[string]) ,

by means of which we state that the relation jobName occurring in the ontology com-
ponent, has arity two and has to be mapped into the relation Jobs occurring in the
database. Another example of abstraction statement is

CV 7→ Profile(profID[int]) ,

declaring that CV is an atomic concept, whose instances are the projection on the profID
column of the Profile relation of the database. Note that the arity of Profile is greater
than one.
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The exact syntax is defined as follows. We have two variants: the former one is
a simple version, called simple abstraction statement, while the latter is more general,
called complex abstraction statement and are similar to the one presented in [7].

Let R1 be a relation symbol and let R2 be an m-ary table in the database. Let
c1, . . . , cn be n 6 m column names of relation R2 each of which of type ti. We also
assume that the score of an instance ofR2 is stored in the column cscore. Then a simple
abstraction statement is of the form

R1 7→ R2(c1[t1], . . . , cn[tn])[cscore] .

stating that R1 is an n-ary relation of the ontology component, that is mapped into the
projection on columns c1 . . . , cn of relation R2. The score of these tuples is provided
by column cscore of relation R2. The score column cscore may be omitted and in that
case the score 1 is assumed for the tuples. We assume that R1 occurs in O, while R2

occurs in F .
On the other hand, a complex abstraction statement is of the form

R1 7→ (t1, . . . , tn)[cscore]. sql ,

where sql is an SQL statement returning n-ary tuples of type 〈t1, . . . , tn〉 with score
determined by the cscore column. The tuples are ranked in descreasing order of score
and, as for the fact component, we assume that there cannot be two records 〈c, s1〉 and
〈c, s2〉 in the result set of sql with s1 6= s2 (if there are, then we remove the one with
the lower score). The score column cscore may be omitted and in that case the score 1
is assumed for the tuples. We assume that R1 occurs in O, while all of the relational
tables occurring in the SQL statement occur in F . An example of complex abstraction
statement is

BigCity 7→ (id)[score].(SELECT
id,min(1, size/106) AS score
FROM CityTable
ORDER BY score ) .

In the above case, we defined the abstract relation BigCity as the set of city IDs, where
the score of being big is determined by min(1, size/106), where size is an attribute
of the CityTable relation recording the number of inhabitants of a city. The city IDs
are ranked in decreasing order of score.

Note that a simple abstraction statement can be expressed as a complex abstraction
statement of the form

R1 7→ (t1, . . . , tn)[cscore].(SELECT c1, . . . , cn, cscore FROM R2) .

Finally, we assume that there is at most one abstract statement for each abstract rela-
tional symbolR1 and we will assume that a SQL statement is considered as an n+1-ary
concrete predicate with obvious semantics.
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Query language. Concerning queries, a SoftFacts query consists of a “conjunctive
query”, with a scoring function to rank the answers.

Before we give the formal syntax, we will provide some examples, with rising
complexity, with their informal meaning.

A simple query form is

q(x)[s] ← ∃y R1(z1)[s1], . . . , Rl(zl)[sl],
OrderBy(s = s1 ⊗ . . .⊗ sl)

where q is an n-ary predicate, everyRi is an ni-ary predicate, x is a vector of variables,
and every zi is a vector of constants, or variables; x are the distinguished variables;
y are existentially quantified variables called the non-distinguished variables; zi are
tuples of constants or variables in x or y. We omit to write ∃y when y is clear from
the context. s, s1, . . . , sl are distinct variables and different from those in x and y.
Ri(zi) may also be a concrete unary predicate of the form (z 6 v), (z < v), (z >
v), (z > v), (z = v), (z 6= v), where z is a variable, v is a value of the appropriate
concrete domain. We call q(x)[s] its head, ∃y.R1(z1)[s1], . . . , Rl(zl)[sl] its body and
OrderBy(s = s1 ⊗ . . .⊗ sl) the scoring atom.

The informal meaning of such a query is: if zi is an instance of Ri to degree si,
then x is an instance of q to degree at least or equal to s1 ⊗ . . .⊗ sl. We also allow the
scores [s], [s1], . . . , [sl] and the scoring atom to be omitted. In this case we assume the
value 1 instead.

Example queries are:

q(x)←SportsCar(x)
// find sports cars

q(x)←SportsCar(x), hasSpeed(x, y), (y > 240)
// find sports cars whose speed exceed 240

q(x)[s]←SportsCar(x)[s1], hasSpeed(x, y), isFast[y][s2],OrderBy(s = s1 · s2)
// find fast sports cars

So far, we used⊗ as scoring combination function. We may further generalize queries,
by allowing the form

q(x)[s] ← ∃y R1(z1)[s1], . . . , Rl(zl)[sl],
OrderBy(s = f(s1, . . . , sl))

where f is a scoring function f : ([0,>])l → [0,>], which combines the scores si of
the l relations Ri(c′i) into an overall score s to be assigned to the rule head q(c). We
assume that f is monotone, that is, for each v,v′ ∈ ([0,>])l such that v 6 v′, it holds
f(v) 6 f(v′), where (v1, . . . , vl) 6 (v′1, . . . , v

′
l) iff vi 6 v′i for all i. An example

query of this form is:

q(x)[s] ← SportsCar(x)[s1],Cheap(x)[s2],
OrderBy(s = 0.7 · s1 + 0.3 · s2)

// find cheap sports cars
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Here, we may assume to have database tables WonderCars(carID, carName, speed, score)
and Cars(ID, price, cheapdegree), with abstraction statements

SportsCar 7→ WonderCars(carID[int])[score]
Cheap 7→ Cars(ID[int])[cheapdegree] .

Therefore, SportsCar and Cheap are atomic concepts, whose instances are gathered
from the tables WonderCars and Cars, and whose score are in the score and cheapdegree
column, respectively. Eventually, the answers to the above query are ranked according
to the score computed as a linear combination of the score of being a sport car and
cheap.

In the previous example, we also assume that there is some fixed procedure that
for each car, computes its degree of cheapness as a function of the price and stores the
result in the Cars table. As next, we would like this procedure to be also allowed to
be user-defined in the sense that a function computing the score occurs in a query. For
instance, a user may decide that the degree of cheapness of a car is a function of its
price and is determined by

mycheap(price) = max(0, 1− price

12000
) .

Then he is allowed to write the query

q(x)[s] ← SportsCar(x)[s1], hasPrice(x, p),
OrderBy(s = 0.7 · s1 + 0.3 ·mycheap(p))

that is,

q(x)[s] ← SportsCar(x)[s1], hasPrice(x, p),
OrderBy(s = 0.7 · s1 + 0.3 ·max(0, 1− p

12000 ))

where we consider the abstract mapping

hasPrice 7→ Cars(ID[int], price[int])

stating that hasPrice is a binary relation of tuples 〈ID, price〉 each of which having score
1 (as the score component is omitted in the abstract mapping). Now, such queries are
of the general form

q(x)[s] ← ∃y R1(z1)[s1], . . . , Rl(zl)[sl],
OrderBy(s = f(s1, . . . , sl, p1(z′1), . . . , ph(z′h))

where additionally, pj is an nj-ary fuzzy predicate assigning to each nj-ary tuple cj
a score pj(cj) ∈ [0,>]. Such predicates are called expensive predicates in [9] as the
score is not pre-computed off-line, but is computed on query execution. We require
that an n-ary fuzzy predicate p is safe, that is, there is not an m-ary fuzzy predicate p′

such that m < n and p = p′. Informally, all parameters are needed in the definition
of p. Note that concerning fuzzy predicates, we may use the so-called left-shoulder,
right-shoulder, triangular and trapezoidal functions (see Fig. 4), which are well known
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HasDegree
profID classID Mark

2 29 107
34 25 104
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Degree
degID Name

29 Civil Structural Engineering
25 Chemical Engineering

.

.

.

.

.

.

Figure 5: The HasDegree and Degree tables.

fuzzy membership functions in fuzzy set theory. So, for instance, we may write the
query

q(x)[s] ← SportsCar(x)[s1], hasPrice(x, p),
OrderBy(s = 0.7 · s1 + 0.3 · ls(p; 10000, 14000))

Here, ls(x; 10000, 14000) dictates that we are definitely satisfied if the price is less than
10000, but can pay up to 14000 to a lesser degree of satisfaction.

Example 3 (Example 2 cont.) Consider Example 2. Assume that we have the two
relational tables in Figure 5, which given a profID, gives us the degreeID and the
marks obtained by profID and given an degreeID, the degree name. Assume that we
have also the abstract mappings

hasName 7→ Profile(LastName[string])
hasDegree 7→ HasDegree(profID[int], classID[int])

hasMark 7→ HasDegree(profID[int],Mark[int])
hasDegreeName 7→ Degree(degID[int],Name[string]) .

Then, a query searching for CV’s with a degree with mark between 100 (minimum) and
110 (maximum) can be expressed as

q(id, name, degree,mark)[s] ← CV(id), hasName(id, name), hasDegree(id, y),
hasDegreeName(y, degree), hasMark(id,mark),
OrderBy(s = rs(mark; 100, 110))
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Then we may have the results

id name degree mark score
...

...
...

...
...

2 Hernandez Civil Structural Engineering 107 0.7
...

...
...

...
...

34 Gadducci Chemical Engineering 104 0.4
...

...
...

...
...

2

Finally, we address our last query language extension, by allowing so-called ranking
aggregates to occur in a query [21]. Essentially, ranking aggregates apply usual SQL
aggregate functions such as SUM,AVG,MAX,MIN to the scores of group of tuples,
which are answers to a query. For instance, by referring to Example 3, a person (e.g.,
Gadducci) may held more than one degree and we would like to rank a CV with more
degrees better than one with just one (e.g. we may would like to sum-up the scores of
all degrees of Gadducci).

Example 4 (Example 3 cont.) Consider Example 3. Assume that we additionally would
like to sum-up the scores of the degrees of each person. Then, such a query may be ex-
pressed as

q(id, name)[s] ← CV(id), hasName(id, name), hasMark(id,mark)
GroupedBy(id, name),
OrderBy(s = SUM[rs(mark; 100, 110)])

Intuitively, for the above query, we ask to group all tuples according to id and then for
each group to sum-up the scores. That is, if g = {t1, . . . , tn} is a group of tuples with
same id, where each tuple has score si computes as

min(CV(id), hasName(id, name), hasMark(id,mark), rs(mark; 100, 110)) ,

then the score sg of the group g is
∑
ti si. A group g is ranked then according to its

score sg and the top-k ranked groups are returned. 2

More formally, let @ be ranking aggregate function with @ ∈ {SUM,AVG,MAX,MIN}
then a query with ranking aggregates is of the form

q(x)[s] ← ∃y R1(z1)[s1], . . . , Rl(zl)[sl],
GroupedBy(w),
OrderBy(s = @[f(s1, . . . , sl, p1(z′1), . . . , ph(z′h)])

where additionally w is a list of variables according to which we want to group the
tuples and @ is the aggregate function according to which to compute the score of the
group. GroupBy(w) is acalled the grouping atom.

12



In summary, a query in its general form is an expression

q(x)[s] ← ∃y R1(z1)[s1], . . . , Rl(zl)[sl],
GroupBy(w),
OrderBy(s = @[f(s1, . . . , sl, p1(z′1), . . . , ph(z′h)])

(6)

where

1. q is an n-ary relation, every Ri is an ni-ary relation,

2. x are the n distinguished variables;

3. s, si are distinct score variables and neither occurring in x nor in y. All si will
take values in [0,>]. s will take value in [0,>], except for the case of ranking
aggregates, where s may be a non-negative real value;

4. y are so-called non-distinguished variables and are distinct from the variables in
x;

5. w are variables in x or y such that each variable in x occurs in w;

6. zi, zj
′ are tuples of constants or variables in x or y. Any variable in x occurs in

some zi. Any variable in zj
′ occurs in some zi;

7. pj is an nj-ary fuzzy predicate assigning to each nj-ary tuple cj a score pj(cj) ∈
[0,>]. Such predicates are called expensive predicates in [9] as the score is not
pre-computed off-line, but is computed on query execution. We require that an
n-ary fuzzy predicate p is safe, that is, there is not an m-ary fuzzy predicate
p′ such that m < n and p = p′. Informally, all parameters are needed in the
definition of p;

8. f is a scoring function f : ([0,>])l+h → [0,>], which combines the scores of
the l relations Ri(c′i) and the h fuzzy predicates pj(c′′j ) into an overall score
to be assigned to the rule head R(c). We assume that f is monotone, that is,
for each v,v′ ∈ ([0,>])l+h such that v 6 v′, it holds f(v) 6 f(v′), where
(v1, . . . , vl+h) 6 (v′1, . . . , v

′
l+h) iff vi 6 v′i for all i;

9. @ is a ranking aggregate function with @ ∈ {SUM,AVG,MAX,MIN};

10. We also assume that the computational cost of f and all fuzzy predicates pi is
bounded by a constant.

Finally, a disjunctive query q is, as usual, a finite set of conjunctive queries in which
all the rules have the same head.

Semantics. From a semantics point of view, SoftFacts is based on mathematical
fuzzy logic [14]. Given a concrete domain 〈∆D ,ΦD〉, an interpretation I = 〈∆, ·I〉
consists of a fixed infinite domain ∆, containing ∆D , and an interpretation function ·I
that maps

• every atom A to a partial function AI : ∆→ [0, 1]
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• maps an n-ary predicate R to a partial function RI : ∆n → [0, 1]

• constants to elements of ∆ such that aI 6= bI if a 6= b (unique name assumption).

Intuitively, rather than being an expression (e.g. R(c)) either true or false in an inter-
pretation, it has a degree of truth in [0, 1]. So, given a constant c, AI(c) determines to
which degree the individual c is an instance of atom A. Similarly, given an n-tuple of
constants c, RI(c) determines to which degree the tuple c is an instance of the relation
R. We also assume to have one object for each constant, denoting exactly that object.
In other words, we have standard names, and we do not distinguish between the alpha-
bet of constants and the objects in ∆. Furthermore, we assume that the relations have a
typed signature and the interpretations have to agree on the relation’s type. To the easy
of presentation, we omit the formalization of this aspect and leave it at the intuitive
level.

Note that, since RI (resp. AI) may be a partial function, some tuples may not have
a score. Alternatively, we may assume RI (resp. AI) to be a total function. We use
the former formulation to distinguish the case where a tuple c may be retrieved, even
though the score is 0, from the case where a tuple is not retrieved, since it does not
satisfy the query. In particular, if a tuple does not belong to an extensional relation,
then its score is assumed to be undefined, while if RI (resp. AI) is total, then the score
of this tuple would be 0.

In the following, we use c to denote an n-tuple of constants, and c[i1, ..., ik] to
denote the i1, . . . , ik-th components of c. For instance, (a, b, c, d)[3, 1, 4] is (c, a, d).

Concerning facts, an interpretation I is a model of (or satisfies) a fact R(c)[s],
denoted I |= R(c)[s], iff RI(c) > s whenever RI(c) is defined. Furthermore, an
interpretation I is a model of (satisfies) a fact component F iff it satisfies each element
in it.

Concerning concrete comparison predicates, the interpretation function ·I has to
satisfy

([i] 6 v)I(c) =
{
> if c[i] 6 v
0 otherwise

and similarly for the other comparison constructs, ([i] < v), ([i] > v), ([i] > v) and
([i] = v) | ([i] 6= v).

Concerning axioms, as in an interpretation each Rli(c) has a degree of truth, we
have to specify how to combine them to determine the degree of truth of the conjunction
Rl1 u . . . uRlm. Usually, in mathematical fuzzy logic one uses a so-called T-norm ⊗
to combine the truth of “conjunctive” expressions (see [14]).

The interpretation function ·I has to satisfy: for all c ∈ ∆k and n-ary relation R:

(∃[i1, . . . , ik]R)I(c) = supc′∈∆n, c′[i1,...,ik]=cR
I(c′)

(∃[i1, . . . , ik]R.(Cond1 u . . . u Condl))I(c) =
supc′∈∆n, c′[i1,...,ik]=cR

I(c′)⊗ Cond1
I(c′)⊗ . . .⊗ CondlI(c′))

Some explanation is in place. Consider (∃[i1, . . . , ik]R). Informally, from a classical
semantics point of view, (∃[i1, . . . , ik]R) is the projection of the relation R over the
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columns i1, . . . , ik and, thus, corresponds to the set of tuples

{c | ∃c′ ∈ R s.t. c′[i1, . . . , ik] = c} .

Note that for a fixed tuple c there may be several tuples c′ ∈ R such that c′[i1, . . . , ik] =
c. Now, if we switch to fuzzy logic, for a fixed tuple c and interpretation I, each of the
previous mentioned c′ is instance ofR to a degreeRI(c′). It is usual practice in mathe-
matical fuzzy logic to consider the supremum among these degrees (the existential is in-
terpreted as supremum), which motivates the expression supc′∈∆n, c′[i1,...,ik]=cR

I(c′).
The argument is similar for the ∃[i1, . . . , ik]R.(Cond1u . . .uCondl) construct except
that we consider also the additional conditions as conjuncts.

Note also that since in our specific case CondiI(c′) ∈ {0,>} we have that

(∃[i1, . . . , ik]R.(Cond1 u . . . u Condl))I(c) =
supc′∈∆n, c′[i1,...,ik]=c min(RI(c′), Cond1

I(c′), . . . , CondlI(c′))

Now given an interpretation I, the notion of I is a model of (satisfies) an axiom τ ,
denoted I |= τ , is defined as follows:

I |= (Rl1 u . . . uRlm v Rr)[n]

iff for all c∈∆k

n⊗Rl1I(c)⊗ . . .⊗RllI(c)) 6 RrI(c) ,

where we assume that the arity of Rr and all Rli is k.
An interpretation I is a model of (satisfies) an ontology O iff it satisfies each

element in it.
Concerning abstraction statements, the notion of I is a model of (satisfies) a simple

abstraction statement σ, denoted I |= σ, is defined as follows:

I |= R1 7→ R2(c1[t1], . . . , cn[tn])[cscore]

iff for all c∈∆n

R1
I(c) > max{s | c′ ∈ TR2 , c

′[i1, . . . , in] = c, s = c′[is]} ,

where i1, . . . , in are the column numeration corresponding to the column names c1, . . . , cn,
and is is the column number associated to the scoring column cscore. Essentially, the
value v of R1

I(c) is obtained as follows. We select all tuples c′ in the database table
of R2, i.e. TR2 , whose projection on the columns c1, . . . , cn is c. The score of these
tuples c′ is s = c′[is]. Then the value v is the maximum of all these scores s. 5

More generally, the notion of I is a model of (satisfies) a complex abstraction
statement σ, denoted I |= σ, is defined as follows: let sql be a SQL statement and let
sqlI = {〈c, s〉 | SQLD(c, s) = 1} (the set of answers to sql), then

5Note that the semantics is quite close to the one of (∃[i1, . . . , in]R2)(c).
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I |= R 7→ (t1, . . . , tn)[cscore]. sql

iff for all c∈∆n

RI(c) > s if 〈c, s〉 ∈ sqlI .

An interpretation I is a model of (satisfies) an abstraction component A iff it satisfies
each element in it and I is a model of (satisfies) a knowledge base if it satisfies each
component.

Concerning queries, we may assume that they are of the form

q(x)[s] ← ∃y φ(x,y)[s] , (7)

where φ(x,y)[s] is

R1(z1)[s1], . . . , Rl(zl)[sl],GroupBy(w),
OrderBy(s = @[f(s1, . . . , sl, p1(z′1), . . . , ph(z′h)]) .

Let R be an n-ary relation, c an n-ary tuple and s be a score. Then an interpretation
I is a model of (satisfies) R(c)[s], denoted I |= R(c)[s], iff RI(c) > s. Note that if
RI(c) is not defined then R(c)[n] is not satisfied.

Now, I is a model of (satisfies) a query of the form (7) without ranking aggregates
iff for all c∈∆n, qI(c) > s whenever

s = sup{s′ | c′ ∈ ∆× · · · ×∆ substitution of variables in y,
I |= Ri(ci)[si], where ci is the projection of 〈c, c′〉 on the variables zi,
vj = pj(c̄j), where c̄j is the projection of 〈c, c′〉 on the variables z′j ,
s′ = f(s1, . . . , sl, v1, . . . , vh)} .

We also assume that sup ∅ is undefined. Essentially, as the variables y are existentially
quantified, we take the supremum of the scores s′ computed over all possible tuples
〈c, c′〉, where c′ is a substitution for the variables y.

In case we have also ranking aggregates, the definition is slightly more involved.
We say that I is a model of (satisfies) a query of the form (7) with ranking aggregates
iff for all c∈∆n, qI(c) > s whenever

s = sup{s′ | g = {〈c, c′1〉, . . . , 〈c, c′k〉} group of tuples with identical projection on the variables in w,
for 1 6 r 6 k, c′r ∈ ∆× · · · ×∆ substitution of variables in y,
for 1 6 r 6 k, I |= Ri(ci)[s

r
i ], where ci is the projection of 〈c, c′r〉 on the variables zi,

for 1 6 r 6 k, vr
j = pj(c̄j), where c̄j is the projection of 〈c, c′r〉 on the variables z′j ,

for 1 6 r 6 k, sr = f(sr
1, . . . , s

r
l , v

r
1 , . . . , v

r
h)}

s′ = @[s1, . . . , sk]} .

In the above expression, for each group of tuples, g = {〈c, c′1〉, . . . , 〈c, c′k〉}, we
compute the scores sr each tuple belonging to that group and then apply the ranking
aggregation function.

We say K entails q(c) to degree s, denoted K |= q(c)[s], iff for each model I of
K, it is true that qI(c) > s whenever qI(c) is defined.

For a disjunctive query q = {q1, . . . , qm}, K entails q(c) to degree s, denoted
K |= q(c)[s], iff K |= qi(c)[s] for some qi ∈ q, while the best entailment degree of
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q(c) relative to K is bed(K,q(c)) = sup{s | K |= q(c)[s]}. The answer set of q
w.r.t. K is

ans(K,q) = {〈c, s〉 | s = bed(K,q(c))} .
As now each answer to a query has a degree of truth, the basic inference problem that
is of interest in SoftFacts is the top-k retrieval problem, formulated as follows.

Top-k Retrieval. Given a knowledge base K, and a disjunctive query q, retrieve k
tuples 〈c, s〉 that instantiate the query relation q with maximal scores (if k such tuples
exist), and rank them in decreasing order relative to the score s, denoted

ansk(K,q) = Topk ans(K,q) .

Example 5 ([27]) Suppose the set of axioms is

O = {∃[2]P2 v A,A v ∃P1, B v ∃[1]P2}

Let us assume that we have the abstraction statements

P2 7→ TabP2(c[int], s[string])
B 7→ TabB(c[int])
C 7→ TabC(c[int]) ,

and that the set of facts F is

TabP2 = {〈0, s〉, 〈3, t〉, 〈4, q〉, 〈6, q〉}
TabB = {〈1〉, 〈2〉, 〈5〉, 〈7〉}
TabC = {〈5〉, 〈3〉, 〈2〉, 〈4〉}

Assume our disjunctive query is q = {q′, q′′} where

q′ := q(x)[s]← ∃y∃z.P2(x, y), P1(y, z),OrderBy(s = f(p(x)))
q′′ := q(x)[s]← C(x),OrderBy(s = f(r(x))) ,

the scoring function f is the identity f(z) = z (f is monotone, of course), the fuzzy
predicate p is p(x) = max(0, 1−x/10), and the fuzzy predicate r is r(x) = max(0, 1−
(x/5)2). Therefore, we can rewrite the query q as

q′ := q(x)[s]← ∃y∃z.P2(x, y), P1(y, z),OrderBy(s = max(0, 1− x/10))
q′′ := q(x)[s]← C(x),OrderBy(s = max(0, 1− (x/5)2)) .

Now, it can be verified that K |= q(3)[0.7], K |= q(2)[0.84] and for any v ∈ [0, 1],
K 6|= q(9)[v].

In the former case, any model I of K satisfies P2(3, t). But, I satisfies O, so
I satisfies ∃[2]P2 v ∃P1. As I satisfies P2(3 , t), I satisfies (∃[2]P2)(t) and, thus,
(∃[1]P1)(t). As 0.7 = max(0, 1− 3/10), it follows that 〈3, 0.7〉 evaluates the body of
q′ true in I. On the other hand, 〈3, 0.64〉 evaluates the body of q′′ true in I. Hence,
under I the maximal score for 3 is 0.7, i.e., qI(3) > 0.7. The other cases can be shown
similarly. In summary, it can be shown that the top-4 answer set of q is ans4(K,q) =
[〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉, 〈3, 0.7〉]. 2
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4 Query answering
From a query answering point of view, the SoftFacts system extends the DL-Lite/DLR-
Lite reasoning method [6] to the fuzzy case. The algorithm is an extension of the one
described in [6, 25, 27]). Roughly, given a query q(x)[s]← ∃yφ(x,y)[s],

1. by considering O, the user query q is reformulated into a set of conjunctive
queries r(q,O). Informally, the basic idea is that the reformulation procedure
closely resembles a top-down resolution procedure for logic programming, where
each axiom is seen as a logic programming rule. For instance, given the query

q(x)[s]← A(x)[s′],OrderBy(s = f(s′))

and suppose that O contains the axioms (B1 v A)[n] and (B2 v A)[m], then
we can reformulate the query into two queries

q(x)[s] ← B1(x)[s1],OrderBy(s = f(n⊗ s1)
q(x)[s] ← B2(x)[s2],OrderBy(s = f(m⊗ s2) ;

2. from the set of reformulated queries r(q,O) we remove redundant queries;

3. the reformulated queries q′ ∈ r(q,O) are translated to ranked SQL queries and
evaluated. The query evaluation of each ranked SQL query returns the top-k
answer set for that query;

4. all the n = |r(q,O)| top-k answer sets have to be merged into the unique top-k
answer set ansk(K,q). As k ·n may be large, we apply a Disjunctive Threshold
Algorithm (DTA, see e.g. [27]) to merge all the answer sets.

We next address in more detail the above steps.
At first, the input query q is reformulated into a set of conjunctive queries r(q,O),

by using O only. After having submitted the queries in r(q,O) to a top-k database
retrieval engine (specifically, RankSQL [22]), we merge the returned ranked lists using
the DTA. The DTA is an extension of the one described in [27] and presented later on.

4.1 Query reformulation
The query reformulation step is an extension of [6, 27, 25] to our case and is as follows.

We say that a variable in a conjunctive query is bound if it corresponds to either a
distinguished variable or a shared variable, i.e., a variable occurring at least twice in the
query body, or a constant, while we say that a variable is unbound if it corresponds to
a non-distinguished non-shared variable (as usual, we use the symbol “ ” to represent
non-distinguished non-shared variables). Note that an expression ∃[i1, . . . , ik]R can be
seen as the Relation R(x), where the variables in position i1, . . . , ik are unbound. We
write also R( , . . . , , xi1 , . . . , xik , , . . . , ) to denote the relation R(x) in which all
variables except those in position i1, . . . , ik are unbound. Given a vector of variables
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x, and a condition Cond occurring in the left-hand side of an axiom then Cond(x) is
defined as follows:

([i] 6 v)(x) = (xi 6 v)
([i] < v)(x) = (xi < v)
([i] > v)(x) = (xi > v)
([i] > v)(x) = (xi > v)
([i] = v)(x) = (xi = v)
([i] 6= v)(x) = (xi 6= v) .

An axiom τ is applicable to an atom A(x)[s] in a query body, if τ has A in its right-
hand side, while τ is applicable to an atom R( , . . . , , xi1 , . . . , xik , , . . . , )[s] in a
query body, if the right-hand side of τ is ∃[i1, . . . , ik]R. We indicate with gr(g; τ) the
expression obtained from the atom or relation g by applying the inclusion axiom τ and
with θ(g; τ) the variable substitution obtained from the atom or relation g by applying
the inclusion axiom τ . Specifically,
• if g = A(x)[s] and τ is (Rl1 u . . . uRlm v A)[n] then gr(g; τ) is {C1(x)[s1], . . . , Cm(x)[sm]},

where for each t ∈ {1, . . . ,m}, st is a new scoring variable, θ(g; τ) = {s/n ⊗ s1 ⊗
. . .⊗ sm}, and

– if Rlt = At then Ct(x) = At(x);

– if Rlt = ∃[j]R then Ct(x) = ∃z1, . . . , zl.Rt(z), where l is the cardinality of R
and z = 〈z1, . . . , zj−1, x, zj+1, . . . , zl〉;

– if Rlt = ∃[i]R.(Cond1 u . . . u Condh) then Ct(x) = ∃z1, . . . , zl.Rt(z) ∧
Cond1(z) ∧ . . . ∧ Condh(z), where z = 〈z1, . . . , zj−1, x, zj+1, . . . , zl〉 and l
is the cardinality of R.

• if g = R( , . . . , , xi1 , . . . , xik , , . . . , )[s] and τ is (Rl1 u . . . uRlm v ∃[i1, . . . , ik]R)[n]
then gr(g; τ) is {C1(xi1 , . . . , xik )[s1], . . . , Cm(xi1 , . . . , xik )[sm]}, where for each t ∈
{1, . . . ,m}, st is a new scoring variable, θ(g; τ) = {s/n⊗ s1 ⊗ . . .⊗ sm}, and

– if Rlt = At and k = 1 then Ct(xi1 , . . . , xik ) = At(xi1 , . . . , xik );

– if Rlt = ∃[j1, . . . , jk]R then Ct(xi1 , . . . , xik ) = ∃z1, . . . , zl.Rt(z), where l
is the cardinality of R and z is such that the variables in position j1, . . . , jk are
xi1 , . . . , xik ;

– ifRlt = ∃[j1, . . . , jk]R.(Cond1u. . .uCondh) thenCt(xi1 , . . . , xik ) = ∃z1, . . . , zl.Rt(z)∧
Cond1(z)∧ . . .∧Condh(z), where l is the cardinality of R and z is such that the
variables in position j1, . . . , jk are xi1 , . . . , xik .

Example 6 Consider the query

q0 := q(x)[s]← A(x)[s1], B(x)[s2],OrderBy(s = min(s1, s2))

and suppose that O contains the axioms

τ1 := (B1 v A)[0.8]
τ2 := (B2 v A)[0.7] .

19



Suppose that a⊗ b = a · b and that g = A(x)[s1]. Then

gr(g; τ1) := {B1(x)[s3]}, θ(g; τ1) := {s1/0.8 · s3}
gr(g; τ2) := {B1(x)[s4]}, θ(g; τ2) := {s1/0.7 · s4} .

Now, using gr(g; τ i) and θ(g; τ i) we may reformulate the original query by replacing
in the query g with the elements in gr(g; τ1) and then applying the score variable
substitution θ(g; τ i) to the scoring atom. Therefore, we get two new queries

q1 := q(x)[s]← B1[s3], B(x)[s2],OrderBy(s = min(0.8 · s3, s2))
q2 := q(x)[s]← B2[s4], B(x)[s2],OrderBy(s = min(0.9 · s4, s2)) .

2

We are now ready to present the query reformulation algorithm.
Given a disjunctive query q and a set of axioms O, the algorithm reformulates q

in terms of a set of conjunctive queries r(q,O), which then can be evaluated over the
facts F using the mappings in the abstraction component A.

Algorithm 1 QueryRef (q,O)
Input: A disjunctive query q, SoftFacts axiomsO.
Output: Set of reformulated conjunctive queries r(q,O).
1: r(q,O) := q
2: repeat
3: S = r(q,O)
4: for all q ∈ S do
5: for all g ∈ q do
6: if τ ∈ O is applicable to g then
7: r(q,O) := r(q,O) ∪ {q[g/gr(g, τ)]θ(g, τ)}
8: for all g1, g2 ∈ q do
9: if g1 and g2 unify then

10: r(q,O) := r(q,O) ∪ {κ(reduce(q, g1, g2))}
11: r(q,O) := removeSubs(r(q,O))
12: until S = r(q,O)
13: return r(q,O)

In the algorithm, q[g/g′]θ(g, τ) denotes the query obtained from q by replacing the
atom g with a new atom g′. To the resulting query we apply the score variable substi-
tution θ(g; τ i) to the scoring atom. At step 8, for each pair of atoms g1, g2 that unify,
the algorithm computes the query q′ = reduce(q, g1, g2), by applying to q the most
general unifier between g1 and g2

6.
Due to the unification, variables that were bound in q may become unbound in q′.

Hence, inclusion axioms that were not applicable to atoms of q, may become applicable
to atoms of q′ (in the next executions of step (5)). Function κ applied to q′ replaces
with each unbound variable in q′. Finally, in step 11 we remove from the set of
queries r(q,O), those which are already subsumed in r(q,O). The notion of query
subsumption is similar as for the classical database theory [30]. Given two queries
qi (i = 1, 2) with same head q(x)[s] and q1 6= q2, we say that q1 is subsumed by

6We say that two atoms g1 = r(x1, . . . , xn) and g2 = r(y1, . . . , yn) unify, if for all i, either xi = yi

or xi = or yi = . If g1 and g2 unify, then the unification of g1 and g2 is the atom r(z1, . . . , zn), where
zi = xi if xi = yi or yi = , otherwise zi = yi [4].
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q2, denoted q1 v q2, iff for any interpretation I, for all tuples c, q1
I(c) 6 q2

I(c).
Essentially, if q1 v q2 and both q1 and q2 belong to r(q,O) then we can remove q1

from r(q,O) as q1 produces a lower ranked result than q2 with respect to the same
tuple c. In order to decide query subsumption, we can take advantage of the results
in [20], related to the query containment part.

A condition for query subsumption is the following. Assume that q1 and q2 do not
share any variable. This can be accomplished by renaming all variables in e.g. q1. Then
it can be shown that

Proposition 1 ([27]) If q1 and q2 share the same score combination function, then
q1 v q2 iff there is a variable substitution θ such that for each relationR(z2) occurring
in the rule body of q2 there is a relation R(z1) occurring in the rule body of q1 such
that R(z2) = R(z1)θ.

More complicated are cases in which q1 and q2 do not share the same score combination
function.

Example 7 (Example 6 cont. ) Consider Example 6. Suppose that the ontology com-
ponent O has additionally the recursive axiom

τ3 := (A uB3 v A)[0.9]

Therefore, through the query reformulation procedure we get a new query

q3 := q(x)[s]← A(x)[s5], B3(x)[s6], B(x)[s2],OrderBy(s = min(0.9 · s5 · s6, s2))

Now, let’s compare q0 with q3. It turns out that q3 v q0 as for any score n of a constant
c being instance of atom A, min(0.9 · n · s6, s2)) 6 min(n, s2)). for any value for s2

and s6.
2

We can extend the query subsumption condition in Proposition 1 in the following way.
Let q1 and q2 be two queries and let σ1 and σ2 be the scoring component of q1 and q2,
respectively. Then it can be shown that

Proposition 2 ([27]) q1 v q2 iff there is a variable substitution θ such that for each
relation R(z2) occurring in the rule body of q2 there is a relation R(z1) occurring
in the rule body of q1 such that R(z2) = R(z1)θ, and σ1θ 6 σ2 for all variables
occurring in σ1θ and σ2.

Example 8 (Example 7 cont. ) Consider Example 7. Let θ = {s5/s1} then σ0 =
min(s5, s2)), while σ3θ = min(0.9 · s5 · s6, s2)). It is easily verified that min(0.9 · s5 ·
s6, s2)) = σ3θ 6 σ1 = min(s5, s2)) as the score combination function is monotone in
its arguments and 0.9 · s5 · s6 6 s5.

2

We use Proposition 2 to avoid the recursive application of the query reformulation steps
(see, e.g., Example 7). In such cases the check of the condition σ1θ 6 σ2 is easy due
to the monotonicity of the score combination function, the monotonicity of ⊗ and that
⊗ is bounded, i.e. a⊗ b 6 a. This concludes the query reformulation step.
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Example 9 ([27]) Consider Example 5. At step 1 r(q,O) is initialized with {q′, q′′}.
It is easily verified that both conditions in step 6 and step 9 fail for q′′. So we proceed
with q′. Let σ be s = max(0, 1 − x/10). Then at the first execution of step 7, the
algorithm inserts query q1,

q1 := q(x)[s]← P2(x, y), A(y),OrderBy(σ)

into r(q,O) using the axiom A v ∃[1]P1. Note that the weight of the axiom is 1 and
that f(1⊗ x) = f(x).

At the second execution of step 7, the algorithm inserts query q2,

q2 := q(x)[s]← P2(x, y), P2( , y),OrderBy(σ)

using the axiom ∃[2]P2 v A.
Since the two atoms of the second query unify, reduce(q, g1, g2) returns

q(x)[s]← P2(x, y),OrderBy(σ)

and since now y is unbound (y does not occur in σ), after application of κ, step 10
inserts the query q3,

q3 := q(x)[s]← P2(x, ),OrderBy(σ)

At the third execution of step 7, the algorithm inserts query q4,

q4 := q(x)[s]← B(x),OrderBy(σ)

using the axiom B v ∃[1]P2 and stops.
Note that we need not to evaluate all queries qi. Indeed, it can easily be verified

that for each query qi and all constants c, the scores of q3 and q4 are not lower than
all the other queries qi and q′. That is, we can restrict the evaluation of the set of
reformulated queries to r(q,O) = {q′′, q3, q4} only. As a consequence, the top-4
answers to the original query are [〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉, 〈3, 0.7〉], which are the
top-4 ranked tuples of the union of the answer sets of q′′, q3 and q4. 2

4.2 Computing top-k answers
The main property of the query reformulation algorithm is as follows and extends the
result in [27] to SoftFacts:

ansk(K,q) = Topk{〈c, v〉 | qi ∈ r(q,O),F |= qi(c, v)} .

The above property dictates that the set of reformulated queries qi ∈ r(q,O) can be
used to find the top-k answers, by evaluating them over the set of instances F only,
i.e., over the database, without referring to the ontology O anymore. In the following,
we show how to find the top-k answers of the union of the answer sets of conjunctive
queries qi ∈ r(q,O).
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A naive solution to the top-k retrieval problem is as follows: we compute for all
qi ∈ r(q,O) the whole answer set ans(qi,F) = {〈c, v〉 | F |= qi(c, v)}, then we
compute the union,

⋃
qi∈r(q,O) ans(qi,O), of these answer sets, order it in descending

order of the scores and then we take the top-k tuples. We note that each conjunc-
tive query qi ∈ r(q,O) can easily be transformed into an SQL query expressed over
DB(F), i.e., the database encoding F . The transformation is conceptually simple.

A major drawback of this solution is the fact that there might be too many tuples
with non-zero score and hence for any query qi ∈ r(q,O), all these scores should be
computed and the tuples should be retrieved. This is not feasible in practice, as a there
may be millions of tuples in the knowledge base.

4.3 The DTA without ranking aggregates
A more effective solution consists in relying on existing top-k query answering algo-
rithms for relational databases (see, e.g. [9, 12, 19, 22, 21]), which support efficient
evaluations of ranking top-k queries in relational database systems. As shown in [27],
we can profitably use top-k query answering methods for relational databases. In-
deed, an immediate and much more efficient method to compute ansk(K,q) is: we
compute for all qi ∈ r(q,O), the top-k answers ansk(F , qi), using e.g. the system
RankSQL [21]. If both k and the number, nq = |r(q,O)|, of reformulated queries is
reasonable, then we may compute the union,

U(q,K) =
⋃

qi∈r(q,O)

ansk(F , qi) ,

of these top-k answer sets, order it in descending order w.r.t. score and then we take
the top-k tuples.

As an alternative, we can avoid to compute the whole union U(q,K), so further
improving the answering procedure, by relying on a disjunctive variant [27] of the
so-called Threshold Algorithm (TA) [13], which we call Disjunctive TA (DTA).

We recall that the TA has been developed to compute the top-k answers of a con-
junctive query with monotone score combination function. In the following we recall
that we can use the same principles of the TA to compute the top-k answers of the
union of conjunctive queries, i.e. a disjunctive query without ranking aggregates:

1. First, we compute for all qi ∈ r(q,O), the top-k answers ansk(F , qi), using
top-k rank-based relational database engine. Now, let us assume that the tuples
in the top-k answer set ansk(F , qi) are sorted in decreasing order with respect
to the score.

2. Then we process each top-k answer set ansk(F , qi) (qi ∈ r(q,O)) according
to some criteria (e.g., in parallel, or alternating fashion, or by selecting the next
tuple from the answer set with highest threshold θi defined below), and top-
down (i.e. the higher scored tuples in ansk(F , qi) are processed before the lower
scored tuples in ansk(F , qi)).
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(a) For each tuple c seen, if its score is one of the k highest we have seen, then
remember tuple c and its score sc (ties are broken arbitrarily, so that only
k tuples and their scores need to be remembered at any time).

(b) For each answer set ansk(F , qi), let θi be the score of the last tuple seen
in this set. Define the threshold value θ to be max(θ1, ..., θnq

).

(c) As soon as at least k tuples have been seen whose score is at least equal to
θ, then halt (indeed, any successive retrieved tuple will have score 6 θ).

(d) Let Y be the set containing the k tuples that have been seen with the highest
scores. The output is then the set {〈c, sc〉 | c ∈ Y }. This set is ansk(K,q).

It is not difficult to see that the DTA determines the top-k answers. Indeed, if at least
k tuples have been seen whose score is at least equal to θ then any new unseen tuple c
will have score bounded by θ and, thus, it cannot make it into the top-k. Hence, we can
stop and the top-k tuples are among those already seen.

The following example illustrates the DTA.

Example 10 ([27]) Consider Example 9. Suppose we are interested in retrieving the
top-3 answers of the disjunctive query q = {q′, q′′}. We have seen that it suffices to
find the top-3 answers of the union of the answers to q3, q4 and to q′′. Let us show
how the DTA works. First, we submit q3, q4 and q′′ to a rank-based relational database
engine, to compute the top-3 answers. It can be verified that

ans3(F , q3) = [〈0, 1.0〉, 〈3, 0.7〉, 〈4, 0.6〉]
ans3(F , q4) = [〈1, 0.9〉, 〈2, 0.8〉, 〈5, 0.5〉]
ans3(F , q′′) = [〈2, 0.84〉, 〈3, 0.64〉, 〈4, 0.36〉] .

The lists are in descending order w.r.t. the score from left to right. Now we process
alternatively ansk(F , q3), then ansk(F , q4) and then ansk(F , q′′) in decreasing order
of the score. The table below summaries the execution of our DTA algorithm. The
ranked list column contains the list of tuples processed.

Step Tuple θq3 θq4 θq′′ θ ranked list
1 〈0, 1.0〉 1.0 - - 1.0 〈0, 1.0〉
2 〈1, 0.9〉 1.0 0.9 - 1.0 〈0, 1.0〉, 〈1, 0.9〉
3 〈2, 0.84〉 1.0 0.9 0.84 1.0 〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉
4 〈3, 0.7〉 0.7 0.9 0.84 0.9 〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉〈3, 0.7〉
5 〈2, 0.8〉 0.7 0.8 0.84 0.84 〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉〈3, 0.7〉

At step 5 we stop as the ranked list already contains three tuples above the threshold
θ = 0.84. So, the final output is

ansk(F , q3) = [〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉] .

Note that not all tuples have been processed. 2

As computing the top-k answers of each query qi ∈ r(q,O) requires (sub) linear time
w.r.t. the database size (using, e.g. [9]), it is easily verified that the disjunctive TA
algorithm is linear in data complexity.

Proposition 3 ([27]) GivenK = 〈F ,O,A〉 and a disjunctive query q without ranking
aggregates, then the DTA computes ansk(K,q) in (sub) linear time w.r.t. the size of F .
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Furthermore, the above method has the non-negligible advantage to be based on exist-
ing technology for answering top-k queries over relational databases, improves signif-
icantly the naive solution to the top-k retrieval problem, and is not difficult to imple-
ment.

4.4 The DTA with ranking aggregates
Unfortunately, in case where a ranking aggregate occurs in a query, the DTA has to be
modified as the stopping condition does not work anymore (ranking aggregates have
been not considered in [27]), as illustrated in the following example.

Example 11 Suppose that r(q,O) = {q1, q2}, where

q1 := q(x)[s]← R(x, y)[s1],GroupBy(x, y),OrderBy(s = Min[s1])
q2 := q(x)[s]← P (x, y)[s1],GroupBy(x, y),OrderBy(s = Min[s1])

and that

ans3(F , q1) = [〈a, 1.0〉, 〈b, 0.7〉, 〈d, 0.4〉]
ans3(F , q2) = [〈d, 0.9〉, 〈e, 0.6〉, 〈f, 0.5〉] .

By applying the DTA, we would get

Step Tuple θq1 θq2 θ ranked list
1 〈a, 1.0〉 1.0 - 1.0 〈a, 1.0〉
2 〈d, 0.9〉 1.0 0.9 1.0 〈a, 1.0〉, 〈d, 0.9〉
3 〈b, 0.7〉 0.7 0.9 0.9 〈a, 1.0〉, 〈d, 0.9〉, 〈b, 0.7〉
4 〈e, 0.6〉 0.7 0.6 0.7 〈a, 1.0〉, 〈d, 0.9〉, 〈b, 0.7〉, 〈e, 0.6〉

We stop at Step 4, as we have three answers above the threshold θ = 0.8. However,
this is not correct as 〈d, 0.9〉 is not the score for d. In fact, as there is still 〈d, 0.4〉 ∈
ans3(F , q1) and, by applying the ranking aggregate function, min(0.9, 0.4) = 0.4,
〈d, 0.4〉 is the score for d and, thus, 〈d, 0.4〉 is not the top-3. 2

The next example shows an even more serious problem.

Example 12 Suppose that r(q,O) = {q1, q2}, where

q1 := q(x)[s]← R(x, y)[s1],GroupBy(x, y),OrderBy(s = SUM[s1])
q2 := q(x)[s]← P (x, y)[s1],GroupBy(x, y),OrderBy(s = SUM[s1])

and that we are looking for the top-1 answer. Assume that the answers are

ans(F , q1) = [〈a, 1.0〉, 〈b, 0.4〉, 〈e, 0.3〉]
ans(F , q2) = [〈b, 0.9〉, 〈e, 0.2〉, 〈a, 0.1〉, ] .

Hence, the score for tuple a should be 1.0 + 0.1 = 1.1, the score for b should be
0.9 + 0.4 = 1.3, and the score for e should be 0.3 + 0.2 = 0.5. therefore, the top-1
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answer is b with score 1.3. Now, if we would rely on submitting just a top-1 query to
the underlying database engine, as we do for the current DTA, we get

ans1(F , q1) = [〈a, 1.0〉]
ans1(F , q2) = [〈b, 0.9〉] .

Then the score for tuple a would be 1.0, while the score for b would be 0.9 and, thus,
not only we get wrong scores, but more importantly we get a wrong ranking result
(tuple a would be top-1). 2

As shown in Examples 11 and 12, in presence of ranking aggregates, unseen tuples in
top-k answers, may affect the final score. This is the case for @ ∈ {MIN,AVG,SUM},
but not for @ = MAX. In fact, we have that:

Case @ = MAX. In this case, no modification to the DTA is required as the DTA
implicitly retrieves the maximal score for each tuple, i.e.

Proposition 4 Given K = 〈F ,O,A〉 and a disjunctive query q with ranking aggre-
gates MAX only, then the DTA computes ansk(K,q) in (sub) linear time w.r.t. the size
of F .

It remains to address the cases @ ∈ {MIN,AVG,SUM}.
In the following, for all qj ∈ r(q,O), consider the answer set Lj = ans(F , qj)

(1 6 j 6 n = |r(q,O)|). Let ci be a tuple and assume that it occurrs in the r 6 n
lists Li1 , ...., Lir with score si1 , . . . , sir . We will say that the definitive score of ci is
@[si1 , . . . , sir ]. Note that, 〈c, s〉 ∈ ans(K,q) is an answer for q iff s is the definitive
score of c.

In case we are interested in the top-k answers to a query q, Example 12 points
out that if we consider Lkj = ansk(F , qj) in place of Lj = ans(F , qj), we may not
necessarily be able to compute from the top-k ranked lists Lkj the definitive score of a
tuple c occurring in some Lkj . Of course, if c occurs in all top-k ranked listsLk1 , . . . , L

k
n

with score s1, . . . , sn then s = @[s1, . . . , sn] is the definitive score of c.
For positive integer i > 1, with ansi,k(F , q) we will denote the ranked list of k

answers of q, ranked between position (i− 1) · k + 1 and i · k, i.e.

ansi,k(F , q) = ansi·k(F , q) \ ans(i−1)·k(F , q) ,

where ans0(F , q) = ∅. For instance, ans1,10(F , q) are the top-10 answers to q,
while ans2,10(F , q) are the answers to q ranked in position [11, ..., 20]. We will use
ansi,k(F , q) to incrementally retrieve a successive ordered group of k answers to q.
We point out that ansi,k(F , q) can be computed, in e.g. RankSQL, by means of a
statement of the form

SELECT . . .
FROM . . .
GROUPBY . . .
ORDERBY . . . DESC
LIMIT k
OFFSET (i− 1) · k
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Case @ ∈ {MIN,AVG,SUM}.

1. Initialization: let n = |r(q,O)|, for all q ∈ r(q,O), let iq = 1, Lq = ∅ and
let θ = 1.0. Compute for all q ∈ r(q,O), the top-k answers and let Lq =
ansk(F , q), using top-k rank-based relational database engine. We will assume
that the tuples in the top-k answer set ansk(F , qi) are sorted in decreasing order
with respect to the score.

2. Then we process each answer set Lq according to some criteria (e.g., in parallel,
or alternating fashion, or by selecting the next tuple from the answer set with
highest threshold θq defined below), and top-down (i.e. the higher scored tuples
in Lq are processed before the lower scored tuples in Lq).

(a) For each answer set Lq , let θLq be the score of the last tuple seen in this
set.

(b) If for a list Lq we have processed the last tuple in it and we didn’t stop,
then update iq := iq + 1 and append ansiq,k(F , q) to Lq (i.e., retrieve the
next k answers of q). If ansiq,k(F , q) = ∅ do not process further Lq and
set θq = 0. Such a list Lq is called completed.

(c) For each tuple c seen so far, let L̄c be the set of (non-completed) ranked
lists in which c has not yet been seen so far;

(d) For each tuple c seen, let lc = [si1 , . . . , sir ] be the actual list of r scores
seen so far for c and let sc = @lc be the actual score of c.

(e) If c has been seen in all lists Lq1 , . . . , Lqn
, or all lists in which c haven’t

be seen so far are completed, then sc is the definitive score of c;

(f) For each tuple c seen so far, which has not yet a definitive score, we define
the upper score of c, s̄c, as follows (s̄c is the highest possible score c may
eventually achieve):

• if @ = Min then s̄c is sc
• if @ = AVG then s̄c is defined as follows. If there is no L ∈ L̄c with
θL > sc then s̄c := sc. Otherwise, s̄c := (r · sc + maxL∈L̄c

θL)/(r+
1). In summary,

s̄c := max(sc, (r · sc + max
L∈L̄c

θL)/(r + 1)) .

• if @ = SUM then s̄c is

s̄c := sc +
∑
L∈L̄c

θL;

(g) As soon as at least k tuples have been seen whose actual score is definitive
and is at least equal to the definitive score or upper score of all other seen
tuples, then halt.

(h) Let Y be the set containing the k tuples that have been seen with the highest
definitive score. The output is then the set {〈c, sc〉 | c ∈ Y }. This set is
ansk(K,q).
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Let us show that the stopping criteria works correctly and that we get the top-k ranked
tuples. Consider the top-k ranked tuples 〈c1, s1〉, . . . , 〈ck, sk〉, returned by the DTA
above. Hence, we have k tuples have been seen whose actual score is definitive and is
at least equal to the definitive score or upper score of all other seen tuples. Consider a
seen tuple 〈c, sc〉, which didn’t make it into the top-k. If the score sc is definitive, it
will not change any longer and, thus, the score of c is below sk. If sc is not definitive,
then c may possibly occur in some of the ranked lists L ∈ L̄c. Suppose that c will not
eventually occur in some of the ranked lists L ∈ L̄c. Then, the score sc of c will be
definitive and below sk. Otherwise, if c will eventually occur with score sL in a ranked
list L ∈ L̄c, then we have to consider all three cases @ ∈ {MIN,AVG,SUM}. By the
sopping criteria sk > s̄c holds.

Case @ = MIN: As min(sc, sL) 6 sc, the definitive score of c will be below sk.

Case @ = AVG: We known that sL 6 maxL∈L̄c
θL. Therefore, the definitive score of

c cannot be greater than maxL∈L̄c
(r·sc+sL)/(r+1) 6 (r·sc+maxL∈L̄c

θL)/(r+
1) = s̄c 6 sk.

Case @ = SUM: We known that sL 6 maxL∈L̄c
θL. Therefore, the definitive score

of c is sc +
∑
L∈L̄c

sL 6 sc +
∑
L∈L̄c

θL = s̄c 6 sk, which concludes.

In the following, we call the DTA dealing with ranking aggregates DTA@. Hence,
from the discussion above we have immediately

Proposition 5 Given K = 〈F ,O,A〉 and a disjunctive query q with ranking aggre-
gates, then DTA@ computes ansk(K,q) in (sub) linear time w.r.t. the size of F .

Example 13 Consider Example 12. The execution of the DTA@ is shown below. For
each tuple we hold the actual score and the upper score. The actual score is in bold if
it is definitive and, in this, case we omit the upper score.

Step Tuple θq1 θq2 ranked list
1 〈a, 1.0〉 1.0 - 〈a, 1.0, 2.0〉
2 〈b, 0.9〉 1.0 0.9 〈a, 1.0, 1.9〉, 〈b, 0.9, 1.9〉
3 〈b, 0.4〉 0.4 0.9 〈b,1.3〉, 〈a, 1.0, 1.9〉
4 〈e, 0.2〉 0.4 0.2 〈b,1.3〉, 〈a, 1.0, 1.2〉, 〈e, 0.2, 0.6〉

We stop at Step 4, as we have tuple b with definitive score 1.3 that is at least equal to
the upper score of all other seen tuples. Note that none of the tuples a, e may make it
into the top-1. 2

5 Experiments
We conducted an experiment with the SoftFacts system. We considered an ontology
for describing Curriculum Vitæ. It consists of 5115 axioms, 22 abstraction statements
and 2550 relations. We considered size d = 100000 for the fact component consisting
in automatically generated CVs and stored them into a database having 17 relational
tables. We build several queries, with/without scoring atom and with/without ranking
aggregates to be submitted to the system varying the size of the CVs and different
values for k in case of top-k retrieval (k ∈ {1, 10}), and measured for each query
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1. the number of queries generated after the reformulation process (|r(q,O)|);

2. the number of reformulated queries after redundancy elimination (qDB);

3. the time of the reformulation process (tref );

4. the time of the query redundancy elimination process (tred);

5. the query answering time of the database (tDBall
, tDB1 , tDB10 ).

Note that the measures 1-4 do neither depend on the number d of CVs nor on the
number k for top-k retrieval.

We run the experiments using our top-k retrieval system, where no indexes have
been used for the facts in the relational database. The queries are the followings (for
illustrative purposes, for some queries we provide also the encoding in our language):

1. Retrieve CV’s with knowledge in Engineering Technology

q(id, lastName, hasKnowledge,Years) ← profileLastName(id, lastName),

hasKnowledge(id, classID,Years,Type, Level),

knowledgeName(classID, hasKnowledge),

Engineering and Technology(classID)

2. Retrieve CV’s referred to candidates with degree in Engineering

3. Retrieve CV’s referred to candidates with knowledge in Artificial Intelligence
and degree final mark no less than 100/110

4. Retrieve CV’s referred to candidates with knowledge in Artificial Intelligence,
degree in Engineering with final mark no less than 100/110

5. Retrieve CV’s referred to candidates experienced in Information Systems (no
less than 15 years) , with degree final mark no less than 100

6. Retrieve top-k CV’s referred to candidates with knowledge in Artificial Intelli-
gence and degree final mark scored according to rs(mark; 100, 110)

q(id, lastName, degreeName,mark, hasKnowledge, years)
← profileLastName(id, lastName), hasDegree(id, degreeId,mark), degreeName(degreeId, degreeName),

hasKnowledge(id, classID, years, type, level), knowledgeName(classID, hasKnowledge),
Artificial Intelligence(classID),OrderBy(s = rs(mark; 100, 110))

7. Retrieve CV’s referred to candidates with degree in Engineering and final mark
scored according to rs(mark; 100, 110)

8. Retrieve top-k CV’s referred to candidates with knowledge in Artificial Intelli-
gence, degree in Engineering with final mark scored according to rs(mark; 100, 110)

9. Retrieve CV’s referred to candidates with knowledge in Information Systems,
degree in Engineering and with degree final mark and years of experience both
scored according to rs(mark; 100, 110) · 0.4 + rs(years; 15, 25) · 0.6;
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10. Retrieve CV’s referred to candidates with good knowledge in Artificial Intelli-
gence, and with degree final mark, years and level of experience scored accord-
ing to rs(mark; 100, 110)·0.4+rs(years; 15, 25)·pref(level;Good/0.6, Excellent/1.0)·
0.6;

q(id, lastName, degreeName,mark, hasKnowledge, years, kType)
← profileLastName(id, lastName), hasDegree(id, degreeId,mark), degreeName(degreeId, degreeName),

hasKnowledge(id, classID, years, type, level), knowledgeLevelName(level, kType),Good(level),
knowledgeName(classID, hasKnowledge),Artificial Intelligence(classID),
OrderBy(s = rs(mark; 100, 110) · 0.4 + rs(years; 15, 25) · pref(level; Good/0.6, Excellent/1.0) · 0.6)

11. Retrieve CV’s referred to candidates with knowledge in Artificial Intelligence,
grouped by MAX[rs(mark; 100, 110) · 0.4 + rs(years; 15, 25) · 0.6]

q(id, lastName)
← profileLastName(id, lastName), hasDegree(id, degreeId,mark),

hasKnowledge(id, classID, years, type, level),Artificial Intelligence(classID),
GroupBy(id, lastname),OrderBy(s = MAX[rs(mark; 100, 110) · 0.4 + rs(years; 15, 25) · 0.6])

12. Retrieve CV’s referred to candidates with knowledge in Artificial Intelligence, a
degree in Engineering and grouped byAV G(rs(mark; 100, 110)·0.4+rs(years; 15, 25)·
0.6)

Queries 1-5 are crisp. As each answer has score 1.0, we would like to verify whether
there is a retrieval time difference between retrieving all records, or just the k answers.
The other queries are top-k queries. In query 9, we show an example of score combi-
nation, with a preference on the number of years of experience over the degree’s mark,
but scores are summed up. In query 10, we use the preference scoring function

pref(level;Good/0.6, Excellent/1.0)

that returns 0.6 if the level is good, while returns 1.0 if the level is excellent. In this
way we want to privilege those with an excellent knowledge level over those with a
good level of knowledge. Queries 11 and 12 use ranking aggregates.

The tests have been performed on a MacPro machine with Mac OS X 10.5.5, 2 x 3
GHz Dual-Core processor and 9 GB or RAM and the results are shown in Fig. 6 (time
is measured in seconds). Let us consider few comments about the results:

• overall, the response time is reasonable (almost fraction of second) taking into
account the non negligible size of the ontology, the number of CVs and that we
did not consider any index for the relational tables;

• if the answer set is large, e.g., query 1, then there is a significant drop in response
time, for the top-k case;

• for each query, the response time is increasing while we increase the number of
retrieved records;

• we may note that the size of the set of reformulated queries |r(q,O)| may be
non negligible, that the redundancy elimination may remove almost one third of
them and the time of the reduction phase is negligible;
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Size 100000
Query All top-1 top-10 |ans(K, q)| |r(q,O)| qDB tref tred tDBall

tDB1
tDB10

1 7.507 2.489 2.581 3985 1599 1066 1.723 0.010 5.738 0.203 0.258
2 0.193 0.036 0.037 445 69 46 0.016 0.001 0.137 0.017 0.039
3 0.164 0.030 0.066 19 18 12 0.006 0.001 0.126 0.015 0.057
4 3.194 2.143 3.155 8 1242 552 2.072 0.015 1.075 0.106 0.875
5 0.348 0.067 0.186 19 75 50 0.027 0.001 0.300 0.021 0.141
6 0.114 0.052 0.102 93 18 12 0.005 0.001 0.088 0.036 0.082
7 0.207 0.053 0.146 445 69 46 0.013 0.001 0.166 0.014 0.118
8 3.090 2.353 3.080 21 1242 552 1.242 0.013 1.306 0.512 1.125
9 22.764 22.702 22.754 91 5175 2300 17.850 0.058 4.819 4.604 4.766

10 0.759 0.378 0.369 40 108 48 0.229 0.003 0.498 0.159 0.145
11 0.105 0.100 0.101 37 18 12 0.004 0.001 0.075 0.072 0.074
12 2.2 2.038 2.128 15 828 552 0.794 0.005 1.370 1.296 1.128

Average 3.834 3.0303 3.248 516.6 961.5 468.4 2.318 0.01 1.4053 0.601 0.761
Median .0554 0.223 0.278 65.5 91.5 49 0.128 0.002 0.399 0.133 0.143

Figure 6: Retrieval statistics.

• the answering time of the database is increasing with the number of top-k results
to be retrieved.

We also point out that for query 9, the major time is spent for the query reformulation
phase and, only after this time, we submit the queries to the database.

6 Related Work
While there are many works addressing the top-k problem for vague queries in databases
(cf. [3, 9, 13, 12, 18, 19, 22, 21, 24]), little is known for the corresponding problem
in knowledge representation and reasoning. For instance, [32] considers non-recursive
fuzzy logic programs in which the score combination function is a function of the score
of the atoms in the body only (no expensive fuzzy predicates are allowed). The work
[26] considers non-recursive fuzzy logic programs as well, though the score combina-
tion function may consider expensive fuzzy predicates. However, a score combination
function is allowed in the query rule only. We point out that in the case of non-recursive
rules and/or axioms, we may rely on a query rewriting mechanism, which, given an ini-
tial query, rewrites it, using rules and/or axioms of the KB, into a set of new queries
until no new query rule can be derived (this phase may require exponential time rel-
ative to the size of the KB). The obtained queries may then be submitted directly to
a top-k retrieval database engine. The answers to each query are then merged using
the disjunctive threshold algorithm given in [26]. The works [27, 25] address the top-k
retrieval problem for the description logic DL-Lite only, though recursion is allowed
among the axioms. Again, the score combination function may consider expensive
fuzzy predicates. However, a score combination function is allowed in the query only.
The work [29] shows an application of top-k retrieval to the case of multimedia infor-
mation retrieval by relying on a fuzzy variant of DLR-Lite. Finally, [28] addresses the
top-k retrieval for general (recursive) fuzzy LPs, though no expensive fuzzy predicates
are allowed. Closest to our work is clearly [28]. In fact, our work extends [28] by
allowing expensive fuzzy predicates, which have the effect that the threshold mecha-
nism designed in [28] does not work anymore. Furthermore, in this paper, we made an
effort to plug-in current top-k database technology, while [28] does not and provides
an ad-hoc solution.
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7 Summary and Outlook
The top-k retrieval problem is an important problem in logic-based languages for the
Semantic Web. We have addressed this issue in the SoftFacts system, an ontology
mediated top-k information retrieval system over relational databases. In SoftFacts,
an ontology layer is used to define (in terms of a tractable DLR-Lite like description
logic) the relevant abstract concepts and relations of the application domain, facts are
stored into a relational database, accessed via an abstraction component. The results of
a query may be ranked according to some scoring function. We have illustrate the log-
ical model, the architecture, the representation and the query language, the reasoning
algorithms of the SoftFacts system. We have also provided experiments, which show
promising results from a scalability point of view.
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