
Ann Math Artif Intell (2009) 55:389–417
DOI 10.1007/s10472-008-9099-0

Approximate well-founded semantics, query answering
and generalized normal logic programs over lattices

Yann Loyer · Umberto Straccia

Published online: 25 October 2008
© Springer Science + Business Media B.V. 2008

Abstract The management of imprecise information in logic programs becomes
important whenever the real world information to be represented is of an imperfect
nature and the classical crisp true, false approximation is not adequate. In this work,
we consider normal logic programs over complete lattices, where computable truth
combination functions may appear in the rule bodies to manipulate truth values and
we will provide a top-down query answering procedure.

Keywords Logic programming · Nonmonotonic logic · Many-valued logic

Mathematics Subject Classifications (2000) 03B50 · 03B52 · 03B70 · 68T27 · 68T30

1 Introduction

The management of uncertainty and/or vagueness within deduction systems is an
important issue whenever the real world information to be represented is of an
imperfect nature. In logic programming, the problem has attracted the attention
of many researchers and numerous frameworks have been proposed. Essentially,
they differ in the underlying notion of uncertainty theory and vagueness theory
(Probability theory, Fuzzy set theory, Multi-valued logic, Possibilistic logic) and
how uncertainty/imprecision values, associated to rules and facts, are managed (see
Section 5).

Y. Loyer
PRiSM (CNRS UMR 8144), Université de Versailles Saint Quentin,
45 Avenue des Etats-Unis, 78035 Versailles, France
e-mail: Yann.Loyer@prism.uvsq.fr

U. Straccia (B)
I.S.T.I. C.N.R., Via G. Moruzzi, 1, 56124 Pisa, Italy
e-mail: straccia@iei.pi.cnr.it

390 Y. Loyer, U. Straccia

Under “uncertainty theory” fall all those approaches in which statements rather
than being either true or false, are true or false to some probability or possibil-
ity/necessity, while under “vagueness theory” fall all those approaches in which
statements are true to some degree which is taken from a truth space (see [40] for
a clarification between the notions of uncertainty and imprecision). In this work we
deal with vagueness and, thus, statements have a degree of truth.

However, very few proposals provide, in a many-valued setting, both non-
monotonic reasoning and a top-down query answering procedure (e.g. [126, 129]).

In this paper, we consider a general framework for normal logic programs with
many-valued well-founded semantics, as described in [126, 129]. The truth-space is a
complete lattice and rules and facts have the very general form

A ← f (B1, ..., Bn) ,

where f is an n-ary computable function over lattices and Bi are atoms. Each rule
may have a different f . Computationally, given an assignment I of values to the Bi,
the value of A is computed by stating that A is at least as true as f (I(B1), ..., I(Bn)).
The form of the rules is sufficiently expressive to encompass most approaches to
many-valued normal logic programming.

We point out that [126, 129] provide a top-down query answering procedure in
this logic. However they require the grounding of the logic program. Furthermore,
queries are ground atoms only. This approach is clearly not satisfactory as the size of
the grounded instance of a logic program as well as the number of query instances of
a query may be large and generally exponential with respect to the size of the non-
ground expressions. We instead provide here a query answering procedure, which
avoids the grounding of the program. We present a simple, yet general tabulation-
like top-down query answering procedure, which focuses on computing all answers
of a query. A distinguishing feature of our query answering procedure is that we
do not determine all answers by discovering all proofs, but rather apply a variant of
so-called memoing techniques developed for classical logic programming—e.g. [144]
for an overview. Essentially, the basic idea of our procedure is to collect, during
the computation, all correct answers incrementally together in a similar way as it
is done for classical Datalog [8, 136, 144]. Hence, for instance, we do not rely on
any notion of atom unification, but rather iteratively access relational tables using
relational algebra.

In the remaining, we proceed as follows. In the following section, we give basic
definitions about our formalism. In Section 3, we define the intended semantics
of normal logic programs. In Section 4 we present a top-down query answering
procedure, while Section 6 concludes and addresses future directions of work.

2 Preliminaries

A truth lattice is a complete lattice L = 〈L, �〉, with L a countable set of truth
values, bottom ⊥, top element �, meet ∧ and join ∨. We also assume that L has
a negation ¬ that reverses the � ordering and verifies ¬¬x = x. In L = 〈L,�〉, a
function g : L → L is monotone if ∀x, y ∈ L, x � y implies g(x) � g(y). A fixed-point
of g is an element x ∈ L such that g(x) = x. The basic tool for studying fixed-points
of functions on lattices is the well-known Knaster-Tarski theorem [134]. Let g be a

Semantics, answering and logic programs over lattices 391

monotone function on a complete lattice 〈L, �〉. Then g has a fixed-point, the set of
fixed-points of f is a complete lattice and, thus, g has a least fixed-point. The least
fixed-point of g can be obtained by iterating g over ⊥, i.e. is the limit of the non-
decreasing sequence y0, . . . , yi, yi+1, . . . , yλ, . . . , where for a successor ordinal i ≥ 0,
y0 = ⊥, yi+1 = g(yi), while for a limit ordinal λ, yλ = lub{yi : i < λ}. We denote the
least fixed-point by lfp(g). For ease of exposition, we will specify the initial condition
y0 and the next iteration step yi+1 only, while the condition on the limit is implicit.

Let F be a family of continuous n-ary functions f : Ln → L. That is (for n = 1), for
any monotone chain x0, x1, . . . of values in L, f (∨ixi) = ∨i f (xi). The n-ary case n > 1
is similar. We assume that the standard functions ∧ (meet) and ∨ (join) belong to F .
Notably, ∧ and ∨ are both continuous. We call f ∈ F a truth combination function,
or simply combination function.

A term, denoted t, is either a variable or a constant symbol. An atom, denoted
A, is an expression of the form p(t1, . . . , tn), where p is an n-ary predicate symbol
and all tis are terms. A literal, L, is of the form A or ¬A, where A is an atom. A
formula, ϕ, is an expression built up from the atoms, the truth values c ∈ L of the
lattice and the functions f ∈ F . The members of the lattice may appear in a formula,
as well as functions f ∈ F : e.g. in L[0,1]∩Q, the expression min(p, q) · max(¬r, 0.7) + v

is a formula ϕ, where p, q, r and v are atoms. The intuition here is that the truth
value of the formula min(p, q) · max(¬r, 0.7) + v is obtained by determining the truth
value of p, q, r and v and then by applying the arithmetic functions, min, max, 1− and
product · to determine the value of ϕ. Note that for ease of exposition, we will use the
symbol min both at the syntactic level, writing min(p, q), as well as in its interpretation
(e.g., I(min(p, q)) = min(I(p), I(q)), where I is an interpretation) with obvious
meaning. A rule is of the form A ← ϕ, where A is an atom and ϕ is a formula. The
atom A is called the head, and the formula ϕ is called the body. A normal logic
program, denoted P , is a finite set of rules. The Herbrand universe HP of P is the
set of constants appearing in P . If there is no constant symbol in P then consider
HP = {a}, where a is an arbitrary chosen constant. The Herbrand base BP of P is
the set of ground instantiations of atoms appearing in P (ground instantiations are
obtained by replacing all variable symbols with constants of the Herbrand universe).

Given P , the normal logic program P∗ is constructed as follows:

1. set P∗ to the set of all ground instantiations of rules in P ;
2. if an atom A is not the head of any rule in P∗, then add the rule A ← f to P∗ (it

is a standard practice in logic programming to consider such atoms as false);
3. replace several rules in P∗ having same head, A ← ϕ1, A ← ϕ2, . . . with A ←

ϕ1 ∨ ϕ2 ∨ . . . (recall that ∨ is the join operator of the truth lattice in infix
notation).

Note that in P∗, each atom appears in the head of exactly one rule.
An interpretation I of a program P is a function that assigns to all atoms of the

Herbrand base of P a value in L. In logic programming, the intended model is usually
the least model of P w.r.t. �.1 Unfortunately, the introduction of negation may have
the consequence that some logic programs do not have a unique minimal model.

1� is extended to the set of interpretations as follows: I � J iff for all atoms A, I(A) � J(A).

392 Y. Loyer, U. Straccia

Example 1 Consider the truth lattice L[0,1] and the program P

p ← max(¬q, r)
q ← max(¬p, s)
r ← max(0.3, min(s, 0.6))

s ← s

Informally, an interpretation I is a model of the program if it satisfies every rule,
while I satisfies a rule X ← Y if I(X) � I(Y).2 Thus, concerning the value of s in
the above program, we only know that it has to be greater than itself. It follows
that the value of s is 0 in any minimal model of P . Concerning the value of r, it
follows that the value of r is 0.3 in any minimal model of P . Then, any model I of this
program is such that I(r) � I(p), I(s) � I(q), I(q) ≥ 1 − I(p). Consequently, there
are an infinite number of minimal models such that I(q) = 1 − I(p) and 0.3 � I(p).

Concerning the previous example we may note that the truth of p in the minimal
models is in the interval [0.3, 1], while for q the interval is [0, 0.7].

The semantics we consider is to provide these intervals as an approximation to the
truth of the atoms A and B. A well-known approach is to rely on L × L (see [42–
44, 46]). Any element of L × L is denoted by [a; b] and interpreted as an interval
on L, i.e. [a; b] is interpreted as the set of elements x ∈ L such that a � x � b . For
instance, turning back to Example 1 above, in the intended model of P , the truth of
p is “approximated” with [0.3; 1], i.e. the truth of p lies in between 0.3 and 1 (similarly
for q).

Formally, given a complete lattice L = 〈L, �〉, we construct a so-called bilattice
over L × L, according to a well-known construction method (see [42, 48]). We recall
that a bilattice is a triple 〈B,�t,�k〉, where B is a nonempty set and �t, �k are both
partial orderings giving to B the structure of a lattice with a top and a bottom [48].
We consider B = L × L with the following orderings:

1. the truth ordering �t, where [a1; b 1] �t [a2; b 2] iff a1 � a2 and b 1 � b 2; and
2. the knowledge ordering �k, where [a1; b 1] �k [a2; b 2] iff a1 � a2 and b 2 � b 1,

i.e. [a1, b 1] ⊇ [a2, b 2].
The intuition of those orders is that truth increases if the interval contains greater
values (e.g. [0.1; 0.4] �t [0.2; 0.5]), whereas the knowledge increases when the in-
terval (i.e. in our case the approximation of a truth value) becomes more precise
(e.g. [0.1; 0.4] �k [0.2; 0.3], i.e. we have more knowledge).

The least and greatest elements of L × L are respectively:

• f = [⊥; ⊥] (false) and t = [�; �] (true), w.r.t. �t;
• ⊥ = [⊥; �] (unknown – the less precise interval, i.e. the atom’s truth value is

unknown) and � = [�; ⊥] (inconsistent – the empty interval) w.r.t. �k.

The meet (∧,⊗), join (∨,⊕) and negation (¬) on L × L w.r.t. both orderings are
defined by extending the meet, join and negation from L to L × L in the natural
way: let [a1; b 1], [a2; b 2] ∈ L × L, then

2Roughly, X ← Y dictates that “X should be at least as true as Y.

Semantics, answering and logic programs over lattices 393

Meet and join on �t: [a1; b 1]∧[a2; b 2]=[a1∧a2; b 1∧b 2] and [a1; b 1] ∨ [a2; b 2] =
[a1 ∨ a2; b 1 ∨ b 2];

Meet and join on �k: [a1; b 1]⊗[a2; b 2]=[a1∧a2; b 1 ∨ b 2] and [a1; b 1] ⊕ [a2; b 2] =
[a1 ∨ a2; b 1 ∧ b 2];

Negation: ¬[a; b] = [¬b ; ¬a].

Example 2 For instance, taking L[0,1],

• [0.1; 0.4] ∨ [0.2; 0.5] = [0.2; 0.5],
• [0.1; 0.4] ∧ [0.2; 0.5] = [0.1; 0.4],
• [0.1; 0.4] ⊕ [0.2; 0.5] = [0.2; 0.4],
• [0.1; 0.4] ⊗[0.2; 0.5] = [0.1; 0.5] and
• ¬[0.1; 0.4] = [0.6; 0.9].

Finally, we extend the functions f ∈ F over L pointwise to L × L: for f ∈ F and
[a1; b 1], [a2; b 2] ∈ L × L:

f ([a1; b 1], [a2; b 2]) = [f (a1, a2); f (b 1, b 2)] .

It is easy to verify that these extended functions preserve the original properties of
functions f ∈ F . The following theorem can easily be shown.

Theorem 1 Consider L × L with the orderings �t and �k. Then, the combination
functions ∧,∨,⊗, ⊕ are continuous (and, thus, monotonic) w.r.t. �t and �k; any
negation function is monotonic w.r.t. �k; and if the negation function satisfies the
De Morgan laws, i.e. ∀a, b ∈ L.¬(a ∨ b) = ¬a ∧ ¬b then the negation function is
continuous w.r.t. �k.

We now define the notion of approximate interpretations.

Definition 1 (Approximate interpretation, CP) Let P be a program. An approximate
interpretation of P is a total function I from the Herbrand base BP to the set L × L.
The set of all the approximate interpretations of P , is denoted CP.

Intuitively, assigning the logical value [a; b] to an atom A means that the exact truth
value of A lies in between a and b with respect to �. Our goal will be to determine,
for each atom of the Herbrand base of P the most precise interval that can be
inferred.

We use If and I⊥ to denote the bottom interpretations under �t and �k

respectively (they map any atom into f and ⊥, respectively).
First, we extend the two orderings on L × L to the set of approximate interpreta-

tions CP in the usual way: let I1 and I2 be in CP, then

1. I1 �t I2 iff I1(A) �t I2(A), for all ground atoms A; and
2. I1 �k I2 iff I1(A) �k I2(A), for all ground atoms A.

Under these two orderings CP becomes a complete bilattice. The meet and join
operations over L × L for both orderings are extended to CP in the usual way (e.g. for
any atom A, (I ⊕ J)(A) = I(A) ⊕ J(A)). Negation is extended similarly, for any
atom A, ¬I(A) = I(¬A), and approximate interpretations are extended to elements
of L, for any α ∈ L, I(α) = [α; α].

394 Y. Loyer, U. Straccia

We now identify the models of a program.

Definition 2 (Models of a logic program) Let P be a program and let I be an
approximate interpretation of P . An interpretation I is a model of a logic program P ,
denoted I |= P , iff for the unique rule involving A, A ← ϕ ∈ P∗, I(A) = I(ϕ) holds.

Note that usually a model has to satisfy I(ϕ) �t I(A) only, i.e. A ← ϕ ∈ P∗
specifies the necessary condition on A, “A is at least as true as ϕ”. But, as A ←
ϕ ∈ P∗ is the unique rule with head A, the constraint becomes also sufficient (see
e.g. [43]).

Third, models of a program are usually also characterized in term of fixed-points
of an immediate consequence operator that is used to infer knowledge from the
program.

Definition 3 (TP) Let P be any program. The immediate consequence operator TP
is a mapping from CP to CP , defined as follows: for every interpretation I, for every
ground atom A, for A ← ϕ ∈ P∗

TP (I)(A) = I(ϕ) .

Theorem 2 An interpretation I is a model of P iff I is a fixed-point of TP .

Note that by definition of P∗ it follows that if an atom A does not appear as the
head of a rule, then TP (I)(A) = f.

We have the following Theorem.

Theorem 3 For any program P , TP is monotonic and, if the De Morgan laws hold,
continuous w.r.t. �k.

Note If we restrict our attention to Datalog with negation, then we have to deal with
four values [f ; f], [t; t], [f ; t] and [t; f] that correspond to the truth values false, true,
unknown and inconsistent, respectively. Then, our interval bilattice coincides with
Belnap’s logic [10], the notions of satisfaction and model coincide with the classical
ones, and our operator TP reduces to the usual immediate consequence operator �

defined by Fitting [44].

3 Intended semantics of normal logic programs

We next identify the approximate Kripke-Kleene model and the well-founded model
of LPs, by adapting [80] to our case.

Approximate Kripke-Kleene Model [44] The weakest semantics of a normal logic
program is the least model of the program w.r.t. the knowledge ordering: the
approximate Kripke-Kleene model of a logic program P , denoted KKP , is the �k-
least model of P . By Theorem 3, that model always exists and coincides with the least
fixed-point of TP with respect to �k. For ease of presentation, we may represent an
interpretation also as a set of expressions of the form A : [x; y], where A is a ground
atom, indicating that I(A) = [x; y].

Semantics, answering and logic programs over lattices 395

Example 3 The following sequence of interpretations I0, I1, I2 shows how the ap-
proximate Kripke-Kleene model of Example 1 is computed as the iterated fixed-
point of TP , starting from I0 = I⊥, the �k minimal interpretation that maps any
A ∈ BP to [⊥; �], and In+1 = TP (In) (note that Ii �k Ii+1):

I0 = {p : [0; 1], q : [0; 1], r : [0; 1], s : [0; 1]},

I1 = {p : [0; 1], q : [0; 1], r : [0.3; 0.6], s : [0; 1]},

I2 = {p : [0.3; 1], q : [0; 1], r : [0.3; 0.6], s : [0; 1]},

I3 = I2

= KKP .

Note that KKP is minimal w.r.t. �k and contains only the knowledge provided by P ,
the truth values of q and w lie between 0 and 1, i.e. are unknown, the truth value of
p is greater than 0.3 and the truth value of r lies between 0.3 and 0.6.

As well known, the approximate Kripke-Kleene model is usually considered as
too weak. In the following, we propose to consider the Closed World Assumption
(CWA) [105] to complete our knowledge (the CWA assumes that all atoms whose
value cannot be inferred from the program are false by default). As we will see in
the next section, the CWA also allows us to make the truth interval of an atom more
precise.

The CWA as a Source of falsehood [80] We recall here the notion of support,
introduced in [80], which is equivalent to [42], of a program w.r.t. an interpretation.
Given a program P and an interpretation I that represents our current knowledge,
the support of P w.r.t. I, denoted sP (I), determines in a principled way how much
false knowledge, i.e. how much knowledge provided by the CWA, can “safely”
be joined to I w.r.t. the program P . Roughly speaking, a part of the CWA is an
interpretation J such that J �k If, where If maps any A ∈ BP to [⊥; ⊥], and we
consider that such an interpretation can be safely added to I if J �k TP (I ⊕ J), i.e. if
J does not contradict the knowledge represented by P and I. Intuitively, a part of
the CWA represents an assumption on the falsehood of the atoms. That assumption
should be used to increase our knowledge. To this end, it should be added (using
⊕) to our current knowledge I to provide more precise approximations of the truth
values assigned to each atom. Of course, some care should be taken in order to avoid
the introduction of inconsistent knowledge. Thus we propose to test if adding such
an assumption to our knowledge is safe, i.e. if the activation of the rules through TP
on the interpretation obtained by adding J to I does not contradict the knowledge
that we have assumed (J �k TP (I ⊕ J)). This is formalized as follows.

Definition 4 (safe part) An interpretation J is a safe part of the CWA w.r.t. a
program P and an interpretation I iff

1. J is a part of the CWA, i.e. J �k If, and
2. J is safe w.r.t. P and I, i.e. J �k TP (I ⊕ J).

396 Y. Loyer, U. Straccia

Of course, the CWA should be used to complete as much as possible our current
knowledge. Thus, we are especially interested in the maximal, safe part of the CWA.

Definition 5 (support) The support of a program P w.r.t. an interpretation I, denoted
sP (I), is the maximal safe part of the CWA w.r.t. a program P and an interpretation
I w.r.t. �k, i.e. it is the maximal interpretation J w.r.t. �k such that J �k If and
J �k TP (I ⊕ J).

It is easy to verify (see [80]) that

sP (I) =
⊕

{J | J �k If and J �k TP (I ⊕ J)} .

The following theorem provides an algorithm for computing the support.

Theorem 4 ([80]) sP (I) coincides with the iterated fixed-point of the function FP,I

beginning the computation with If, where

FP,I(J) = If ⊗ TP (I ⊕ J) .

From Theorems 1 and 3, it can be shown that FP,I is monotone and, if the De
Morgan laws hold, continuous w.r.t. �k. It follows that the iteration of the function
FP,I starting from If decreases w.r.t. �k.

We will refer to sP as the closed world operator.

Corollary 1 Let P be a program. The closed world operator sP is monotone and, if
the De Morgan laws hold, continuous w.r.t. the knowledge order �k.

Example 4 The following sequence of interpretations J0, J1, J2 shows the compu-
tation of sP (KKP), i.e. the additional knowledge that can be considered using the
CWA on the Kripke-Kleene semantics KKP of Example 1 (I = KKP , J0 = If and
Jn+1 = FP,I(Jn)):

J0 = {p : [0; 0], q : [0; 0], r : [0; 0], s : [0; 0]},

J1 = {p : [0; 1], q : [0; 0.7], r : [0; 0.3], s : [0; 0]},

J2 = J1

= sP (KKP)

sP (KKP) asserts that, according to the CWA and w.r.t. P and KKP , the truth of
q and r should be respectively at most 0.7 and 0.3, while the truth of s should be
exactly 0. Please, note how the support provides some more precise information
about the atoms q, r and s with respect to the Kripke-Kleene semantics provided
at the beginning of this section, but leaves p invariant.

Classical setting A well-known way for extracting falsehood using the CWA was
defined in the classical setting through the notion of unfounded set [138]. We recall

Semantics, answering and logic programs over lattices 397

that a set U of atoms is unfounded w.r.t. a Datalog program P and an interpretation
I iff for all A in U ,

• for A ← ϕ ∈ P∗ (note that ϕ = ϕ1 ∨ . . . ∨ ϕn and ϕi = Li1 ∧ . . . ∧ Lin), ϕi is false
either w.r.t. I or w.r.t. ¬.U , for all 1 ≤ i ≤ n.3

It is easy to prove that (see [80]), in the classical setting:

Theorem 5 ([80]) Let P and I be a classical logic program and a classical interpreta-
tion, respectively. Let U be a subset of BP .

1. A set U is unfounded w.r.t. P and I iff ¬.U is a safe part of the CWA w.r.t. P
and I;4

2. A set U is the greatest unfounded w.r.t. P and I iff ¬.U is the support of the CWA
w.r.t. P and I, i.e. sP (I) = ¬.UP (I).

Approximate Well-Founded Model We have now two ways to infer information
from a program P and an approximate interpretation I: using TP and using sP .
To maximize the knowledge derived from P and the CWA, we consider the family
of models that already contain their own support. In that family of models, we are
particularly interested in the least one w.r.t. �k.

Definition 6 (Model supported by the CWA) An interpretation I is a model of a
program P supported by the CWA iff I |= P and sP (I) �k I. The approximate well-
founded model of a program P , denoted WP , is the least model of P supported by
the CWA w.r.t. �k, i.e. the �k-least model of P such that I |= P and sP (I) �k I.

If we consider the definition of support in the classical setting, then supported models
are classical models of classical logic programs such that ¬.UP (I) ⊆ I, i.e. the false
atoms provided by the greatest unfounded set are already false in the interpretation
I. That is, CWA does not further contribute improving I’s knowledge about the
program P . It is interesting to note how the above definition is nothing else than
a generalization from the classical setting to lattices of the notion of well-founded
model. Indeed, in [69] it is shown that the well-founded model is the least model
satisfying ¬.UP (I) ⊆ I.

Example 5 Consider the logic program P with the following rules.

q(x) ← q(x) ∨ ¬r(x)

p(x) ← p(x)

r(a) ← t
r(b) ← f

In Table 1 we report the approximate Kripke-Kleene and well-founded model of P ,
marked by bullets.

3The interpretation ¬.U is defined by: for all A, if A ∈ U then ¬.U(A) = f else ¬.U(A) = u.
4Note that this condition can be rewritten as ¬.U ⊆ TP (I ∪ ¬.U).

398 Y. Loyer, U. Straccia

T
ab

le
1

A
pp

ro
xi

m
at

e
K

ri
pk

e-
K

le
en

e
an

d
w

el
l-

fo
un

de
d

m
od

el
of

P
I i

K
K

(P
)

W
F

(P
)

s P
(I

i)
U

P
(I

i)

q(
a)

q(
b

)
r(

a)
r(

b
)

p(
a)

p(
b

)
q(

a)
q(

b
)

r(
a)

r(
b

)
p(

a)
p(

b
)

I 1
⊥

t
t

f
⊥

⊥
•

f
⊥

⊥
f

f
f

{q(
a)

,
r(

b
),

p(
a)

,
p(

b
)}

I 2
f

t
t

f
f

f
•

f
⊥

⊥
f

f
f

{q(
a)

,
r(

b
),

p(
a)

,
p(

b
)}

Semantics, answering and logic programs over lattices 399

Example 6 Consider L[0,1] and the bilattice of intervals build from it. Consider the
following logic program:

P = p(x) ← p(x) ∨ q(x)

q(x) ← (¬r(x) ∧ p(x)) ∨ s(x)

r(x) ← ¬q(x) ∨ t(x)

s(a) ← [0.3; 0.5]
t(a) ← [0.2; 0.4]
s(b) ← t

e(b) ← f

Note that the approximated Kripke-Kleene model of P is such that

KKP ⊇ {p(a) : [0.3; 1], q(a) : [0.3; 0.8], r(a) : [0.2; 0.7], p(b) : t, q(b) : t, r(b) : f},

while the approximated well-founded model is such that

WP ⊇ {p(a) : [0.3; 0.5], q(a) : [0.3; 0.5], r(a) : [0.5; 0.7], p(b) : t, b(b) : t, r(b) : f} .

Notice that KKP �k W FP , as expected.

Now we provide a fixed-point characterization and, thus, a way of computation
of the approximate well-founded semantics. It is based on an operator, called
approximate well-founded operator, that combines the two operators that have been
defined above.

Definition 7 (AWP) Let P be a program. The approximate well-founded operator,
denoted AWP , takes in input an approximate interpretation I ∈ CP and returns
AWP (I) ∈ CP defined by

AWP (I) = TP (I ⊕ sP (I)) .

Note that for A ← ϕ ∈ P∗,

(I ⊕ sP (I))(ϕ) = I(ϕ) ⊕ sP (I)(ϕ)

holds and, thus, we can rewrite the AWP operator as

AWP (I) = TP (I) ⊕ sP (I) . (1)

Theorem 6 ([80]) Let P be a program. An interpretation I is a fixed-point AWP iff I
is a model of P supported by the CWA.

400 Y. Loyer, U. Straccia

Using the properties of monotonicity and continuity of TP and sP w.r.t. the
knowledge order �k over CP, from the fact that CP is a complete lattice w.r.t. �k,
by the well-known Knaster-Tarski theorem [134], it follows that:

Theorem 7 Let P be a program. The approximate well-founded operator AWP is
monotone and, if the De Morgan laws hold, continuous w.r.t. the knowledge order �k.
Therefore, AWP has a least fixed-point w.r.t. the knowledge order �k. Moreover that
least fixed-point coincides with the approximate well-founded semantics WP of P .

It is illustrative to recall, as in [80], the way our definition of approximate well-
founded semantics generalizes the classical setting (using Eq. 1) to logic programs
over lattices, where arbitrary, continuous truth combination functions are allowed to
occur in the rule body.

I is the well-founded semantics of P

Classical logic {f,⊥,t} Interval bilattices

�k-least I s.t. I = WP (I) = TP (I) ∪ ¬.UP (I) I = AWP (I) = TP (I) ⊕ sP (I)

�k-least model I s.t. ¬.UP (I) ⊆ I sP (I) �k I

Hence, the support may be seen as the added-value to the approximate Kripke-
Kleene semantics and evidences the role of CWA in the approximate well-founded
semantics.

Example 7 The following sequence of interpretations shows the computation of WP
of Example 1 (I0 = I⊥ and In+1 = AWP (In)).

I0 = {p : [0; 1], q : [0; 1], r : [0; 1], s : [0; 1]}
sP (I0) = {p : [0; 1], q : [0; 1], r : [0; 0.3], s : [0; 0]}

I1 = {p : [0; 1], q : [0; 1], r : [0.3; 0.3], s : [0; 0]}
sP (I1) = {p : [0; 1], q : [0; 1], r : [0; 0.3], s : [0; 0]}

I2 = {p : [0.3; 1], q : [0; 1], r : [0.3; 0.3], s : [0; 0]}
sP (I2) = {p : [0; 1], q : [0; 0.7], r : [0; 0.3], s : [0; 0]}

I3 = {p : [0.3; 1], q : [0; 0.7], r : [0.3; 0.3], s : [0; 0]}
sP (I3) = {p : [0; 1], q : [0; 0.7], r : [0; 0.3], s : [0; 0]}

I4 = I3

= WP

The truth of r and s are respectively 0.3 and 0, while the truth of p and q can only
be approximated respectively with [0.3; 1] and [0; 0.7]. Note that, at each step i,
the support sP (Ii) provided by the CWA to P and Ii represents some knowledge

Semantics, answering and logic programs over lattices 401

that can be used to complete Ii. Also note that KKP �k WP , i.e. the approximate
well-founded model contains more knowledge than the approximate Kripke-Kleene
model (see Example 3)

KKP = {p : [0.3; 1], q : [0; 1], r : [0.3; 0.6], w : [0; 1]} .

Note also that the only difference between these semantics comes from the use of the
support as a supplementary way to infer knowledge in the computation of WP .

The approximate Kripke-Kleene model is completed with some default knowl-
edge from the CWA, namely sP (I3) = sP (KKP) (see below), to obtain the approxi-
mate well-founded model. Indeed, to stress that role of the support, and thus of the
CWA, note that, in our example (see Example 4 for the computation of the support
sP (KKP)),

WP = KKP ⊕ sP (KKP) ,

i.e. that the approximate well-founded model of P coincides with the Kripke-Kleene
model of P completed with its support.

It is easily be verified that in case of logic programs without negation, no
approximation arises related to the atom’s truth.

Theorem 8 If we restrict our attention to logic programs without negation, then for any
program P the approximate well-founded semantics WP assigns exact values (i.e. of
the form [c; c]) to all atoms.

4 Top-down query answering

A query is an atom ?Q (query atom) of the form q(x), intended as a question about
the truth degree of all the instances of Q in the intended model of P . We also allow
a query to be a set {?Q1, . . . , ?Qn} of query atoms. In that latter case we ask about
the truth degree of all instances of the atoms Qi in the intended model.

The procedure we devise in this paper is a generalization of the procedures
presented in [126, 129]. We anticipate that the main reason why the procedures
in [126, 129] are not suitable to be used for computing all answers to a query ?Q,
given P , is that

• Straccia [126, 129] rely on P ’s grounded version P∗, which may be rather huge
(exponential with respect to |P |, in general) in applications with many facts;

• Straccia [126, 129] answer ground queries only. Strictly speaking, [126, 129] can
compute all answers of a query atom q(x) by submitting as query the set of all
ground instances q(c). This is clearly not feasible if the Herbrand universe is
large.

In the following, we make the following assumptions. We assume the lattice we will
deal with is finite. From a practical point of view this is a limitation we can live with,
especially taking into account that computers have finite resources, and thus, only a
finite set of truth degrees can be represented. In particular, this includes also the usual
case were we use the rational numbers in [0, 1] ∩ Q under a given fixed precision
p of numbers a computer can work with. This will guarantee the termination of

402 Y. Loyer, U. Straccia

our procedures (otherwise the termination after a finite number of steps cannot be
guaranteed always).

Furthermore, we assume that a logic program P is made out of an extensional data-
base (EDB), PE, and an intensional database (IDB), PI . The extensional database is
a set of facts of the form

r(c1, . . . , cn) ← b ,

where r(c1, . . . , cn) is a ground atom and b is a truth interval in L × L. For conve-
nience, for each n-ary extensional predicate r, we represent the facts r(c1, . . . , cn) ←
b in P by means of a relational n + 1-ary table tabr, containing the records
〈c1, . . . , cn, b〉. Thus, the table contains all the instances of r together with their
degrees. Without loss of generality, we assume that there cannot be two records
〈c1, . . . , cn, b 1〉 and 〈c1, . . . , cn, b 2〉 in tabr with b 1 �= b 2.

The intensional database is a set of rules for the form

p(x) ← ϕ(x, y) (2)

in which the predicates occurring in the extensional database (called extensional
predicates) do not occur in the head of rules of the intensional database. Essentially,
we do not allow that the fact predicates occurring in PE can be redefined by PI . We
also assume that the intensional predicate symbol p occurs in the head of at most one
rule in the intensional database. Due to the expressiveness of rule bodies, it is not
difficult to see that, possibly defining an equality predicate Eq(x, y), logic programs
can be put into this form.

For an atom A of the form p(x), an answer for p is a pair 〈θ, b〉, where θ = {x/c}
is a substitution of the variables x in p(x) with the constants in c and b ∈ L × L is
a truth interval. We say that the answer 〈θ, b〉 is correct for p with respect to the
intended model I of P iff I(p(c)) = b . That is, by substituting the variables in x using
θ , the evaluation of the query in the intended model is b . An answer set for p is a set
of answers for p. Of course, our goal is to determine the set of all correct answers
for the query ?Q. For a given n-ary predicate p and a set of answers �p of p, for
convenience we represent �p as an n + 1-ary table tab�p , containing the records
〈c1, . . . , cn, b〉.

Given two answers δ1 = 〈θ, b 1〉 and δ2 = 〈θ, b 2〉 for the same atom P, we define
δ1 �k δ2 (δ1 �k δ2) iff b 1 �k b 2 (b 1 �k b 2). We write δ1 ≺k δ2 (δ1 �k δ2) iff b 1 ≺k

b 2 (b 1 �k b 2). If �1
p and �2

p are two sets of answers for p, we write �1
p �k �2

p

(�1
p �k �2

p) iff for all δ1 ∈ �1
p there is δ2 ∈ �2

p such that δ1 �k δ2 (δ1 �k δ2). We write
�1

p ≺k �2
p (�1

p �k �2
p) iff �1

p �k �2
p (�1

p �k �2
p) and there is δ2 ∈ �2

p such that for
no δ1 ∈ �1

p, δ2 �k δ1 (δ2 �k δ1) holds.
We present now our top-down tabling like procedure tailored to compute all cor-

rect answer of a query ?Q in the intended model. The basic idea of our procedure is
to try to collect, during the computation, all correct answers incrementally together.
The procedure can be related to the so-called memoing techniques (tabling/magic
sets) developed for classical logic programming –see e.g. [144] for an overview.

At first, consider a general rule of the form p(x) ← ϕ(x, y). We note that ϕ(x, y)

depends on a computable function f and the predicates p1, . . . , pk, which occur in
the rule body ϕ(x, y). Assume that �p1 , . . . , �pk are the answers collected so far for
the predicates p1, . . . , pk. Let us consider a procedure eval(p,�p1 , . . . , �pk), which
computes the set of answers 〈{x/c}, b〉 of p, by evaluating the body ϕ(x, y) over the

Semantics, answering and logic programs over lattices 403

data provided by �p1 , . . . , �pk . Formally, let I be an interpretation restricted to the
predicates p1, . . . , pk and tuples such that for all ni-ary predicates pi,

I(pi(c)) =
⎧
⎨

⎩

b , if 〈c, b〉 ∈ tab�pi

f if pi is an extensional predicate and 〈c, b〉 �∈ tab�pi⊥ otherwise .

The intuition in the definition above is that to an atom pi(c) we assign the current
truth value if this truth value is known. Otherwise, we assign to it the default truth,
which is f (if pi is an extensional predicate). Then

eval(p,�p1 , . . . , �pk) = {〈{x/c}, b〉 | b =
∨

c′
I(ϕ(c, c′)), b �= ⊥} , (3)

where c′ is a tuple of constants occurring in
⋃

i �pi . We omit to report the tuple whose
degree is ⊥. The disjunction

∨
c′ is required as the free variables y in ϕ(x, y) may be

seen as existentially quantified.

Example 8 Consider P = {p(x) ← q(x, y), q(a, b) ← f, q(a, c) ← t}. Assume �q =
{〈(a, b),f〉, 〈(a, c),t〉}. Then eval(p,�q) = {〈a,t〉}, which amounts to evaluate
q(a, b) ∨ q(a, c).

We are not going to further investigate the implementation details of the
eval(p,�p1 , . . . , �pk) procedure, though it has to be carefully written to minimize
the number of table look-ups and relational algebraic operations such as joins. It
can be obtained by means of a combination of SQL statements over the tables and
the application of the truth combination functions occurring in the rule body of p.
We point out that eval(p,�p1 , . . . , �pk) can also be seen as a query to a database
made out by the relations tab�p1

, . . . , tab�pk
and that any successive evaluation step

corresponds to the execution of the same query over an updated database. We refer
the reader to e.g. [37, 38, 70] concerning the problem of repeatedly evaluating the
same query to a database that is being updated between successive query requests.
In this situation, it may be possible to use the difference between successive database
states and the answer to the query in one state to reduce the cost of evaluating the
query in the next state.

4.1 Query answering: approximate Kripke-Kleene semantics

We start showing how to compute all answers with respect to the Kripke-Kleene
semantics, i.e. the �k-least fixed-point of TP . The procedure is detailed in Table 2
and is based on similar basic principles as [126, 129]. Assume, we are interested in
determining all correct answers of q(x) w.r.t. the Kripke-Kleene semantics. We call
the procedure with Answer(P, Q). We start with putting the predicate symbols q ∈
Q in the active list of predicate symbols A. At each iteration step (step 2) we select
a new predicate p from the queue A and evaluate it using the eval function with
respect to the answers gathered so far (steps 4 or 5). If the evaluation leads to a
better answer set for p (step 6), we update the current answer set v(p) and add all
predicates p′, whose rule body contains p (the parents of p), to the queue A, i.e. all
predicate symbols that might depend on p are put in the active set to be examined. At
some point (even if cyclic definitions are present) the active list will become empty

404 Y. Loyer, U. Straccia

Table 2 General top-down algorithm

Procedure Answer(P, Q)

Input: Logic program P , set Q of query predicate symbols;
Output: Mapping v containing all correct answers of predicates in Q w.r.t. lfp(TP)

1. A := Q, dg := Q, in := ∅, for all predicate symbols p in P do v(p) = ∅, exp(p) = false
2. while A �= ∅ do
3. select pi ∈ A, A := A \ {pi}, dg := dg ∪ s(pi)

4. if (pi extensional predicate) ∧ (v(pi) = ∅) then v(pi) := tab pi

5. if (pi intensional predicate) then �pi := eval(pi,v(pi1), ...,v(piki
))

6. if v(pi) ≺k �pi then v(pi) := �pi , A := A ∪ (p(pi) ∩ dg)

7. if not exp(pi) then exp(pi) = true, A := A ∪ (s(pi) \ in), in := in ∪ s(pi)

endwhile

and we have actually found all correct answers of q(x). The procedure in Table 2 uses
some auxiliary functions and data structures:

• for predicate symbol pi, s(pi) is the set of predicate symbols occurring in the rule
body of pi, i.e. the sons of pi;

• for predicate symbol pi, p(pi) = {pj : pi ∈ s(pj)}, i.e. the parents of pi;
• in step 5, pi1 , . . . , piki

are all predicate symbols occurring in the rule body of pi,
i.e. the sons s(pi) = {pi1 , . . . , piki

} of pi;
• the variable dg collects the predicate symbols that may influence the result of the

query predicates;
• the array variable exp traces the rule bodies that have been “expanded” (the

predicate symbols occurring in the rule body are put into the active list);
• the variable in keeps track of the predicate symbols that have been put into the

active list so far due to an expansion (to avoid, to put the same predicate symbol
multiple times in the active list due to rule body expansion).

Example 9 Consider Example 6. The computation of Answer(P, {p}) is shown in
Table 3, which also reports �pi and v(pi) at each iteration i. Each line is a sequence
of steps in the ‘while loop’. What is left unchanged is not reported. Answer(P, {p})
returns v(p) = {〈a, [0.3; 1]〉, 〈b , [1; 1]〉}, as expected.

From a computational point of view, the analysis is as in [126, 127, 129]. Given
L = 〈L × L,�k〉, let h(L) be the height of the truth-value set L, i.e. the length of the
longest strictly �k-increasing chain in L × L minus 1, where the length of a chain
v1, ..., vα, ... is the cardinal |{v1, ..., vα, ...}|. The cardinal of a set X is the least ordinal
α such that α and X are equipollent, i.e. there is a bijection from α to X. As made
clear before, the lattice is always finite and, thus, the height is finite as well. Now,
observe that the truth of any ground instance of predicate symbol pi is increasing in
the �k order as pi enters in the A list (step 6), except it enters due to step 7, which
may happen one time only. Hence, as for [126, 127, 129], we have that

Proposition 1 Let L, P and ?Q be a finite truth space, a logic program and a query,
respectively. If the computing cost of each truth combination function is bounded by
c and the height is bounded by h, then the worst-case complexity of the algorithm
Answer(P, Q) is O(|P∗|ch).

Semantics, answering and logic programs over lattices 405

Table 3 Execution related to
Example 9

We conclude by showing that the procedure Answer behaves correctly.

Proposition 2 Let L, P and ?Q be a finite truth space, a logic program and a query,
respectively. Then Answer(P, Q) returns the set of all correct answers of P with
respect to the predicates in Q and the Kripke-Kleene semantics.

Proof For each n-ary predicate p consider the unique rule p(x) ← ϕ(x, y) in P .
Therefore, for each tuple of constants c, there is an unique rule

p(c) ←
∨

c′
ϕ(c, c′) (4)

in P∗. Now, let I be the interpretation such that for all predicates p,

I(p(c)) =
{

v if 〈{x, c}, v〉 ∈ v(p)

KKP (p(c)) otherwise.

Consider p ∈ dg ⊇ Q and δ = 〈{x/c}, v〉 ∈ v(p). As the truth of p(c) is increasing
in the �k order during the computation, by definition of the eval function (3), after
stopping the truth v of the head p(c) evaluates exactly to the truth of the body of
rule (4), i.e. I(p(c)) = ∨

c′ I(ϕ(c, c′)) and, hence, I is a model of P . Also, it is easy
to show by induction on the number of iterations of step 2, that at each iteration
i of step 2, for 〈{x, c}, vi〉 ∈ v(p), where vi is the truth degree of p(c) computed at
the ith iteration so far, and p ∈ dg, we always have that vi �k KKP (p(c)). As a
consequence, as KKP is �k minimal, for each p ∈ dg ⊇ Q, for each δ = 〈{x/c}, v〉 ∈
v(p), I(p(c)) = KKP (p(c)) has to hold. Therefore, all computed answers of p ∈
dg ⊇ Q are correct answers.

406 Y. Loyer, U. Straccia

Vice-versa, suppose there is p ∈ Q such that 〈{x/c}, v〉 �∈ v(p), while KKP
(p(c)) �= ⊥. Then by construction of the eval function and definition of I, we can
show that ⊥ �= KKP (p(c)) = I(p(c)) = ∨

c′ I(ϕ(c, c′)) = ⊥, a contradiction. Hence,
all correct answers with non-⊥ value are retrieved.

4.2 Query answering: approximate well-founded semantics

As we have seen in Section 3, the approximate well-founded semantics of a logic
program P is the �k-least fixed-point of the operator

AWP (I) = TP (I ⊕ sP (I)) .

By Theorem 4, sP (I) coincides with the iterated fixed-point of the function FP,I

beginning the computation with If, where

FP,I(J) = If ⊗ TP (I ⊕ J) .

That is, sP (I) coincides with the limit of the �k decreasing sequence

J0 = If ,

Ji+1 = FP,I(Ji) = If ⊗ TP (I ⊕ Ji) .

As we already have a top-down query answering procedure related to TP , it suffices
to determine an analogue related to the support. In the following, we show how we
can slightly change the Answer procedure to compute the support. That is, we want
a top-down procedure that, for a set of atoms p(x), computes all answers 〈{x/c}, b〉
such that sP (p(c)) = b .

So, let Support(P, Q, I) be the procedure, which is as the Answer procedure
except that:

• Step 1 is replaced with
P := PI , A := Q, dg := Q, in := ∅,
for all predicate symbols p in P do v(p) = ∅, exp(p) = false

The logic program PI is obtained from P in the following way:

– for each intensional predicate p in P , replace the rule p(x) ← ϕ(x, y) in P
with the rule

p(x) ← f⊗ (I(pϕ)(x) ⊕ ϕ(x, y)) , (5)

where I(pϕ)(x) is a built-in predicate that given a substitution c for x, returns∨
c′ I(ϕ(c, c′)).

– for each extensional predicate r in P , replace the rule r(c) ← b in P with the
rule

r(c) ← f⊗ b . (6)

Semantics, answering and logic programs over lattices 407

We point out that the rules above are the result of applying FP,I to the support
sP (I) and to all rules:

sP (I)(p(c)) = [If ⊗ TP (I ⊕ sP (I))](p(c))
= f⊗ [I ⊕ sP (I)](∨c′ ϕ(c, c′))
= f⊗ (I(

∨
c′ ϕ(c, c′)) ⊕ sP (I)(

∨
c′ ϕ(c, c′)))

= f⊗ (
∨

c′ I(ϕ(c, c′)) ⊕ ∨
c′ sP (I)(ϕ(c, c′))) .

Since the above equation holds for all predicates p and all c, we get rule (5)
and (6). Build-in predicates do not count as sons and, thus, do not appear in the
A,s,p,v,in,dg variables.

• Step 6 is replaced with

if v(pi) �k �pi then v(pi) := �pi , A := A ∪ (p(pi) ∩ dg)

Essentially, in Step 6 we replace ≺k with �k. This modification is motivated by
the fact that during the computation of the support, �pi is now �k decreasing in
accordance with Theorem 4.

Example 10 Consider Example 5 and interpretation I2. We have seen that I2 is the
approximate well-founded model of P . We next want to show the computation of
Support(P, {q, r}, I2). We first determine PI2 . As predicate p does not play any role
in the computation, we report the modified rule for predicate q and r only. PI2 related
to q and r is

q(x) ← f⊗ (I2(qϕ)(x) ⊕ (q(x) ∨ ¬r(x)))

r(a) ← ⊥
r(b) ← f .

We recall that I2(qϕ)(a) = I2(q(a) ∨ ¬r(a)) = f, while I2(qϕ)(b) = t. Then, it can be
verified that (by a straightforward fixed-point computation iterating FP,I starting
with If) that the set of correct answers of predicate q, r of P w.r.t. sP (I2) are: �q =
{〈a,f〉},�r = {〈b ,f〉}. Below is a sequence of Support(P, {q, r}, I2), returning the
expected values.

From a computational point of view, as for [129], Support(P, Q, I) has the same
complexity as Answer(P, Q), i.e. O(|P∗|hc). Similarly to Proposition 2, it can be
shown that

Proposition 3 Support(P, Q, I) returns the set of all correct answers of P with respect
to the predicates in Q and the support sP (I) after a finite number of steps.

408 Y. Loyer, U. Straccia

We are now ready to define the top-down procedure AnswerW F(P, Q), which
computes all correct answers to a query ?Q under the approximate well-founded
semantics. We define AnswerW F(P, Q) as Answer(P, Q), except that Step 5 is
replaced with the statements

5. if (pi intensional predicate) then
5.1. Q′ : = s(pi);
5.2. I : = v;
5.3. supp : = Support(P,Q′,I);
5.4. v′ : = I⊕ supp;
5.5. �pi := eval(pi,v′(pi1), ...,v

′(piki
))

These steps correspond to the application of the AWP (I) = TP (I ⊕ sP (I)) operator
to pi. Indeed, at first we ask about all the correct answers of the predicates occurring
in the body of pi w.r.t. the support and the current interpretation I : = v (Steps
5.1 – 5.3). The variable supp holds these answers. Then we join them with I, i.e. we
compute I ⊕ sP (I) (Step 5.4), where this latter is defined pointwise: (i) v′ = v1 ⊕ v2
iff for all p, v′(p) = v1(p) ⊕ v2(p) = {〈θ, b〉 | 〈θ, b 1〉 ∈ v1(p), 〈θ, b 2〉 ∈ v2(p), b =
b 1 ⊕ b 2} (if 〈θ, bi〉 �∈ vi(p) then bi = ⊥ is assumed). Finally, we evaluate the body
of pi with respect to I ⊕ sP (I) (Step 5.5), i.e. we apply TP (I ⊕ sP (I)).

Example 11 Consider Example 5. Let us compute all correct answers to the query
q(x) w.r.t. the approximate well-founded semantics. As the interpretation I2 in
Example 5 is the well-founded model, we expect to retrieve �q = {〈a,f〉, 〈b ,t〉}.
Below is the computation of AnswerW F(P, {q}).

Therefore, AnswerW F(P, {q}) returns v(q) = {〈a,f〉, 〈b ,t〉}, as expected.

From a computational point of view, as for [129], as now for each iteration we
have a call to the support, AnswerW F(P, Q) runs in time O(|P∗|2h2c). Furthermore,
by Proposition 3, and similarly to Proposition 2, it is not difficult to show that:

Proposition 4 After a finite number of steps, AnswerW F(P, Q) returns the set of all
correct answers of P with respect to the predicates in Q and the approximate well-
founded semantics.

Semantics, answering and logic programs over lattices 409

5 Related work

In logic programming, the management of imperfect information has attracted the
attention of many researchers and numerous frameworks have been proposed.
Addressing all of them is almost impossible, due to both the large number of works
published in this field (early works date back to early 80-ties [124]) and the different
approaches proposed. Essentially they differ in the underlying notion of uncertainty
theory and vagueness theory (probability theory, possibilistic logic, fuzzy logic and
multi-valued logic) and how uncertainty/vagueness values, associated to rules and
facts, are managed.

Below a list of references and the underlying imprecision and uncertainty theory
in logic programming frameworks. The list of references is by no means intended to
be all-inclusive.5

Probability theory: [4, 5, 9, 16, 27–31, 47, 54–56, 65, 67, 83–85]
[86–89, 98, 106, 110–113, 116, 117, 139, 145]

Possibilistic logic: [1–3, 14, 39, 114]
Fuzzy set theory: [6, 7, 11, 13, 15, 41, 49, 50, 52, 53, 61, 97, 107, 108, 115]

[92, 118, 123–125, 133, 137, 140–143, 146]
Multi-valued logic: [12, 17–26, 32–36]

[42–46, 51, 57–60, 63, 64, 66, 68]
[74–82, 93–96, 99–103, 103, 104]
[119–122, 126–132, 135]

Here we are dealing with vagueness, so we will not address the former two
categories. Concerning the latter two categories, while there is a large literature
related to the management of vagueness in logic programs, there are rule forms that
are general enough to cover a large amount of them.

Indeed, current frameworks for managing vagueness in logic programming can
roughly be classified into annotation based (AB) and implication based (IB).

• In the AB approach (e.g. [59, 60, 109, 110]), a rule is of the form

A : f (β1, . . . , βn) ← B1 : β1, . . . , Bn : βn

which asserts “the value of atom A is at least (or is in) f (β1, . . . , βn), whenever
the value of atom Bi is at least (or is in) βi, 1 ≤ i ≤ n”. Here f is an n-ary
computable function and βi is either a constant or a variable ranging over an
appropriate truth domain.

• In the IB approach, (e.g. [17, 23, 67, 68, 102, 137, 140] a rule is of the form

A
α← B1, ..., Bn

which says that the value associated with the implication B1 ∧ ... ∧ Bn → A is
α. Computationally, given an assignment I of values to the Bi, the value of A is
computed by taking the “conjunction” of the values I(Bi) and then somehow
“propagating” it to the rule head. The values the atoms may have are taken

5The author apologizes both to the authors and with the readers for all the relevant works, which are
not cited here.

410 Y. Loyer, U. Straccia

from a lattice. More recently, [17, 62, 68, 140] show that most of the frameworks
dealing with imprecision and logic programming can be embedded into the IB
framework. Our work falls into the IB approach.

In some cases, e.g. [68] there is also a function g, which dictates how to aggregate the
truth values in case an atom is head of several rules. So, for instance, given the rules
A ← φ1 and A ← φ2, they are roughly equivalent to A ← g(φ1, φ2) rather than to
A ← φ1 ∨ φ2, as in our case.

There are also some extensions to many-valued positive disjunctive logic pro-
grams [99, 100, 128], while [90, 128] based on an extension of stable models semantics.
However, no top-down query answering procedure is provided.

Very few works address non-monotonic reasoning, as [21, 42, 43, 71–80, 90, 99,
126, 128, 129], where the underlying truth-space are lattices, and its formulations goes
over bilattices [48], like in [21] and this work. While [74–76, 80, 126, 127] uses logic
programs or normal logic programs over bilattices directly under the IB framework.

Sorts, as used in [17, 23], can be simulated by using the join of lattices.
In most frameworks, in order to answer to a query, we have to compute the whole

intended model (e.g., by a bottom-up fixed-point computation) and then answer with
the evaluation of the query in this model. This always requires the computation of
a whole model, even if not all the atom’s truth is required to determine the answer.
some work presenting top-down procedures are [18, 60, 68, 127, 140]), but in very few
of them non-monotonic negation is considered [126, 129], as already pointed out.

Another rising problem is the problem to compute the top-k ranked answers to
a query, without computing the score of all answers. This allows to answer queries
such as “find the top-k closest hotels to the conference location”. Solutions to this
problem for negation free logic programs can be found in [91, 130, 132]. No solution
is yet known for normal logic programs.

6 Conclusions and future work

We have considered a general framework to deal with normal logic programs eval-
uated over complete lattices and with non-monotone negation. Atoms are assigned
with truth interval approximations. Our main contribution is a very general tabling-
like top-down method for answering queries.

The next step for future work is address the problem of computing the top-k
ranked answers to a query, without computing the score of all answers as we did
here. Another point is to extend our formalism to disjunctive logic programs with
default negation were the head of a rule is a disjunction. It would be interesting to
see whether our top-down query method can be extended to this general form (or at
least to disjunctive logic programs) as well.

Acknowledgements We would like to thank to the anonymous reviewers of our earlier version,
who pointed out to related work we were not aware of.

References

1. Alsinet, T., Godo, L.: Towards an automated deduction system for first-order possibilistic logic
programming with fuzzy constants. Int. J. Intell. Syst. 17(9), 887–924 (2002)

Semantics, answering and logic programs over lattices 411

2. Alsinet, T., Godo, L., Sandri, S.: On the semantics and automated deduction fo PLFC, a logic
of possibilistic uncertainty and fuzzyness. In: Proceedings of the 15th Annual Conference on
Uncertainty in Artificial Intelligence (UAI-99). Morgan Kaufmann, San Francisco (1999)

3. Alsinet, T., Godo, L.: A complete calcultis for possibilistic logic programming with fuzzy propo-
sitional variables with fuzzy propositional variables. In: Proceedings of the 16th Conference
in Uncertainty in Artificial Intelligence (UAI-00), pp. 1–10. Morgan Kaufmann, San Francisco
(2000)

4. Baldwin, J.F.: Evidential support of logic programming. Fuzzy Sets Syst. 24(1), 1–26 (1987)
5. Baldwin, J.F.: A theory of mass assignments for artificial intelligence. Lect. Notes Comput. Sci.

833, 22–34 (1994)
6. Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril—Fuzzy and Evidential Reasoning in Artificial

Intelligence. Research Studies, Taunton (1995)
7. Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Applications of fuzzy computation: knowledge

based systems: knowledge representation. In: Ruspini, E.H., Bonnissone, P., Pedrycz, W. (eds.)
Handbook of Fuzzy Computing. IOP, Bristol (1998)

8. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic sets and other strange ways to im-
plement logic programs (extended abstract). In: Proceedings of the Fifth ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems (PODS-86), New York, NY, USA,
pp. 1–15. ACM, New York (1986)

9. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In: Proceedings
of the 7th International Conference in Logic Programming and Nonmonotonic Reasoning
(LPNMR-04). Lecture Notes in Artificial Intelligence, Fort Lauderdale, FL, USA, No. 2923
pp. 21–33. Springer, Berlin Heidelberg New York (2004)

10. Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of
Philosophy, pp. 30–56. Oriel, Stocksfield (1977)

11. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-García, P., Puebla, G.: The Ciao
prolog system. Reference manual. Technical Report CLIPS3/97.1, School of Computer Science,
Technical University of Madrid (UPM) (1997). http://www.cliplab.org/Software/Ciao/

12. Calmet, J., Lu, J., Rodriguez, M., Schü, J.: Signed formula logic programming: operational
semantics and applications. In: Rás, Z.W., Michalewicz, M. (eds.) Proceedings of the Ninth
International Symposium on Foundations of Intelligent Systems. LNAI, Berlin, vol. 1079,
pp. 202–211, 9–13. Springer, Berlin Heidelberg New York (1996)

13. Cao, T.H.: Annotated fuzzy logic programs. Fuzzy Sets Syst. 113(2), 277–298 (2000)
14. Chesnevar, C., Simari, G., Alsinet, T., Godo, L.: A logic programming framework for possi-

bilistic argumentation with vague knowledge. In: Proceedings of the 20th Annual Conference
on Uncertainty in Artificial Intelligence (UAI-04), Arlington, Virginia, pp. 76–84. AUAI,
Arlington (2004)

15. Chortaras, A., Stamou, G.B., Stafylopatis, A.: Integrated query answering with weighted
fuzzy rules. In: 9th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty (ECSQARU-07). Lecture Notes in Computer Science,
No. 4724 pp. 767–778. Springer, Berlin Heidelberg New York (2007)

16. Damásio, C.V., Pereira, L.M.: Hybrid probabilistic logic programs as residuated logic programs.
Stud. Log. 72(1), 113–138 (2002)

17. Damásio, C.V., Medina, J., Ojeda Aciego, M.: Sorted multi-adjoint logic programs: Termination
results and applications. In: Proceedings of the 9th European Conference on Logics in Artificial
Intelligence (JELIA-04). Lecture Notes in Computer Science, No. 3229 pp. 252–265. Springer,
Berlin Heidelberg New York (2004)

18. Damásio, C.V., Medina, J., Ojeda Aciego, M.: A tabulation proof procedure for residuated
logic programming. In: Proceedings of the 6th European Conference on Artificial Intelligence
(ECAI-04), Valencia, 22–27 August 2004

19. Damásio, C.V., Medina, J., Ojeda Aciego, M.: Termination results for sorted multi-adjoint logic
programs. In: Proceedings of the 10th International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems, (IPMU-04), pp. 1879–1886, Perugia,
4–9 July 2004

20. Damásio, C.V., Pereira, L.M.: A survey of paraconsistent semantics for logic programs. In:
Gabbay, D., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management
Systems, pp. 241–320. Kluwer, Deventer (1998)

21. Damásio, C.V., Pereira, L.M.: Antitonic logic programs. In: Proceedings of the 6th
European Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-01).
Lecture Notes in Computer Science, No. 2173. Springer, Berlin Heidelberg New York (2001)

http://www.cliplab.org/Software/Ciao/

412 Y. Loyer, U. Straccia

22. Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Benferhat, S.,
Besnard, P. (eds.) Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 6th
European Conference, ECSQARU 2001, Toulouse, France, 19–21 September 2001. Proceed-
ings, Lecture Notes in Computer Science, vol. 2143, pp. 748–759. Springer, Berlin Heidelberg
New York (2001)

23. Damásio, C.V., Pereira, L.M.: Sorted monotonic logic programs and their embeddings. In:
Proceedings of the 10th International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems, (IPMU-04), pp. 807–814, Perugia, 4–9 July 2004

24. Damásio, C.V., Medina, J., Ojeda-Aciego, M.: Termination of logic programs with imperfect
information: applications and query procedure. J. Appl. Logic 5(3), 435–458 (2007) September

25. Damásio, C.V., Medina, M., Ojeda-Aciego, J.: A tabulation procedure for first-order residuated
logic programs. In: Proceedings of the 11th International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems, (IPMU-06), Paris, 2–7 July 2006

26. Damásio, C.V., Medina, M., Ojeda-Aciego, J.: Termination of logic programs with imperfect
information: applications and query procedure. J. Appl. Logic. 7(5), 435–458 (2007)

27. Dekhtyar, A., Dekhtyar, M.I.: Possible worlds semantics for probabilistic logic programs. In:
20th International Conference on Logic Programming. Lecture Notes in Computer Science,
vol. 3132, pp. 137–148. Springer, Berlin Heidelberg New York (2004)

28. Dekhtyar, A., Dekhtyar, M.I.: Revisiting the semantics of interval probabilistic logic pro-
grams. In: 8th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR-05). Lecture Notes in Computer Science, No. 3662, pp. 330–342. Springer, Berlin
Heidelberg New York (2005)

29. Dekhtyar, A., Dekhtyar, M.I., Subrahmanian, V.S.: Temporal probabilistic logic programs. In:
De Schreye, D. (ed.) Logic Programming: The 1999 International Conference, pp. 109–123, Las
Cruces, 29 November–4 December 1999

30. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. J. Log. Program. 43(3), 187–
250 (2000)

31. Dekhtyar, M.I., Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs: algorithms
and complexity. In: Laskey, K.B., Prade, H. (eds.) Proceedings of the 15th Conference on
Uncertainty in Artificial Intelligence (UAI-99), S.F., Cal., 30– 1 1999, pp. 160–169. Morgan
Kaufmann, San Francisco

32. Denecker, M., Marek, V., Truszczyński, M.: Approximations, stable operators, well-founded
fixpoints and applications in nonmonotonic reasoning. In: Minker, J. (ed.) Logic-Based Artifical
Intelligence, pp. 127–144. Kluwer, Deventer (2000)

33. Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate well-founded and stable semantics for
logic programs with aggregates. In: Codognet, P. (ed.) Logic Programming, 17th International
Conference, ICLP 2001, Paphos, Cyprus, 2001 November 26–December 1. Proceedings, Lecture
Notes in Computer Science, vol. 2237. Springer, Berlin Heidelberg New York (2001)

34. Denecker, M., Marek, V.W., Truszczyński, M.: Uniform semantic treatment of default and
autoepistemic logics. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Proceedings of the 7th
International Conference on Principles of Knowledge Representation and Reasoning, pp. 74–
84. Morgan Kaufman, San Francisco (2000)

35. Denecker, M., Marek, V.W., Truszczyński, M.: Ultimate approximations. Technical Report CW
320, Katholieke Iniversiteit Leuven (2001)

36. Denecker, M., Marek, V.W., Truszczyński, M.: Ultimate approximations in nonmonotonic
knowledge representation systems. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams,
M. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the 8th
International Conference, pp. 177–188. Morgan Kaufmann, San Francisco (2002)

37. Dong, G., Libkin, L., Wong, L.: Incremental recomputation in local languages. Inf. Comput.
181(2), 88–98 (2003)

38. Dong, G., Su, J., Topor, R.W.: Nonrecursive incremental evaluation of datalog queries. Ann.
Math. Artif. Intell. 14(2–4), 187–223 (1995)

39. Dubois, D., Lang, J., Prade, H.: Towards possibilistic logic programming. In: Proc. of the 8th
Int. Conf. on Logic Programming (ICLP-91), pp. 581–595. MIT, Cambridge (1991)

40. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: A
clarification. Ann. Math. Artif. Intell. 32(1–4), 35–66 (2001)

41. Ebrahim, R.: Fuzzy logic programming. Fuzzy Sets Syst. 117(2), 215–230 (2001)
42. Fitting, M.C.: The family of stable models. J. Logic Program. 17, 197–225 (1993)
43. Fitting, M.C.: Fixpoint semantics for logic programming—a survey. Theor. Comp. Sci. 21(3),

25–51 (2002)

Semantics, answering and logic programs over lattices 413

44. Fitting, M.: A Kripke-Kleene-semantics for general logic programs. J. Logic Program. 2, 295–
312 (1985)

45. Fitting, M.: Pseudo-Boolean valued Prolog. Stud. Log. XLVII(2), 85–91 (1987)
46. Fitting, M.: Bilattices and the semantics of logic programming. J. Logic Program. 11, 91–116

(1991)
47. Fuhr, N.: Probabilistic Datalog: Implementing logical information retrieval for advanced appli-

cations. J. Am. Soc. Inf. Sci. 51(2), 95–110 (2000)
48. Ginsberg, M.L.: Multi-valued logics: a uniform approach to reasoning in artificial intelligence.

Comput. Intell. 4, 265–316 (1988)
49. Guller, D.: Procedural semantics for fuzzy disjunctive programs. In: Baaz, M., Voronkov, A.

(eds.) Logic for Programming, Artificial Intelligence, and Reasoning 9th International Con-
ference, LPAR 2002, Tbilisi, Georgia, 14–18 October 2002. Proceedings, Lecture Notes in
Computer Science, vol. 2514, pp. 247–261. Springer, Berlin Heidelberg New York (2002)

50. Guller, D.: Semantics for fuzzy disjunctive programs with weak similarity. In: Abraham, A.,
Köppen, M. (eds.) Hybrid Information Systems, First International Workshop on Hybrid In-
telligent Systems, Adelaide, Australia, 2001 December 11–12, Proceedings, Advances in Soft
Computing, pp. 285–299. Physica, Würzburg (2002)

51. Hähnle, R.: Uniform notation of tableaux rules for multiple-valued logics. In: Proc. Interna-
tional Symposium on Multiple-Valued Logic, Victoria, pp. 238–245. IEEE, Los Alamitos (1991)

52. Hinde, C.J.: Fuzzy prolog. Int. J. Man-Mach. Stud. 24, 569–595 (1986)
53. Ishizuka, M., Kanai, N.: Prolog-ELF: incorporating fuzzy logic. In: Proceedings of the 9th

International Joint Conference on Artificial Intelligence (IJCAI-85), pp. 701–703, Los Angeles,
CA, 18–23 August 1985

54. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming with the power
of maximum entropy. Artif. Intell. 157(1–2), 139–202 (2004)

55. Kersting, K., De Raedt, L.: Bayesian logic programs. In: Cussens, J., Frisch, A.M. (eds.) ILP
Work-in-progress reports, 10th International Conference on Inductive Logic Programming,
CEUR Workshop Proceedings. CEUR-WS.org (2000)

56. Kersting, K., De Raedt, L.: Bayesian logic programming: Theory and tools. In: Getoor, L.,
Taskar, B. (eds.) An Introduction to Statistical Relational Learning. MIT, Cambridge (2005)

57. Khamsi, M.A., Misane, D.: Disjunctive signed logic programs. Fundam. Inform. 32, 349–357
(1996)

58. Khamsi, M.A., Misane, D.: Fixed point theorems in logic programming. Ann. Math. Artif. Intell.
21, 231–243 (1997)

59. Kifer, M., Li, A.: On the semantics of rule-based expert systems with uncertainty. In: Proc. of the
Int. Conf. on Database Theory (ICDT-88), number 326 in Lecture Notes in Computer Science,
pp. 102–117. Springer, Berlin Heidelberg New York (1988)

60. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its
applications. J. Logic Program. 12, 335–367 (1992)

61. Klawonn, F., Kruse, R.: A Łukasiewicz logic based Prolog. Mathw. Soft Comput. 1(1), 5–29
(1994)

62. Krajči, S., Lencses, R., Vojtáš, P.: A comparison of fuzzy and annotated logic programming.
Fuzzy Sets Syst. 144, 173–192 (2004)

63. Kulmann, P., Sandri, S.: An annotaded logic theorem prover for an extended possibilistic logic.
Fuzzy Sets Syst. 144, 67–91 (2004)

64. Lakshmanan, L.: An epistemic foundation for logic programming with uncertainty. In: Founda-
tions of Software Technology and Theoretical Computer Science. Lecture Notes in Computer
Science, no. 880, pp. 89–100. Springer, Berlin Heidelberg New York (1994)

65. Lakshmanan, L.V.S., Sadri, F.: On a theory of probabilistic deductive databases. Theory Pract.
Log. Program. 1(1), 5–42 (2001)

66. Lakshmanan, L.V.S., Sadri, F.: Uncertain deductive databases: a hybrid approach. Inf. Syst.
22(8), 483–508 (1997)

67. Lakshmanan, L.V.S., Shiri, N.: Probabilistic deductive databases. In: Int’l. Logic Programming
Symposium, pp. 254–268. MIT, Cambridge (1994)

68. Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with uncertainty.
IEEE Trans. Knowl. Data Eng. 13(4), 554–570 (2001)

69. Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: Unfounded sets, fixpoint seman-
tics, and computation. Inf. Comput. 135(2), 69–112 (1997)

70. Libkin, L., Wong, L.: On the power of incremental evaluation in SQL-like languages. Lect.
Notes Comput. Sci. 1949, 17–30 (2000)

414 Y. Loyer, U. Straccia

71. Loyer, Y., Spyratos, N.: Hypothesis-Founded Semantics for Datalog Programs with Negation.
In: 27th International Symposium on Mathematical Foundations of Computer Science (MFCS-
2002). Lecture Notes in Computer Science, Warsaw, Poland, no. 2420, pp. 483–494. Springer,
Berlin Heidelberg New York (2002)

72. Loyer, Y., Spyratos, N., Stamate, D.: Parametrized semantics of logic programs–a unifying
framework. Theor. Comput. Sci. 308(1–3), 429–447 (2003)

73. Loyer, Y., Spyratos, N., Stamate, D.: Hypothesis-based semantics of logic programs in multival-
ued logics. ACM Trans. Comput. Log. 5(3), 508–527 (2004)

74. Loyer, Y., Straccia, U.: Uncertainty and partial non-uniform assumptions in parametric de-
ductive databases. In: Proc. of the 8th European Conference on Logics in Artificial Intelli-
gence (JELIA-02). Lecture Notes in Computer Science, Cosenza, Italy, no. 2424, pp. 271–282.
Springer, Berlin Heidelberg New York (2002)

75. Loyer, Y., Straccia, U.: The well-founded semantics in normal logic programs with uncertainty.
In: Proc. of the 6th International Symposium on Functional and Logic Programming (FLOPS-
2002). Lecture Notes in Computer Science, Aizu, Japan, no. 2441, pp. 152–166. Springer, Berlin
Heidelberg New York (2002)

76. Loyer, Y., Straccia, U.: The approximate well-founded semantics for logic programs with uncer-
tainty. In: 28th International Symposium on Mathematical Foundations of Computer Science
(MFCS-2003). Lecture Notes in Computer Science, Bratislava, Slovak Republic, no. 2747,
pp. 541–550. Springer, Berlin Heidelberg New York (2003)

77. Loyer, Y., Straccia, U.: Default knowledge in logic programs with uncertainty. In: Proc. of the
19th Int. Conf. on Logic Programming (ICLP-03). Lecture Notes in Computer Science, Mumbai,
India, no. 2916, pp. 466–480. Springer, Berlin Heidelberg New York (2003)

78. Loyer, Y., Straccia, U.: Epistemic foundation of the well-founded semantics over bilattices.
In: 29th International Symposium on Mathematical Foundations of Computer Science (MFCS-
2004). Lecture Notes in Computer Science, Bratislava, Slovak Republic, no. 3153, pp. 513–524.
Springer, Berlin Heidelberg New York (2004)

79. Loyer, Y., Straccia, U.: Any-world assumptions in logic programming. Theor. Comput. Sci.
342(2–3), 351–381 (2005)

80. Loyer, Y., Straccia, U.: Epistemic foundation of stable model semantics. J. Theor. Pract. Log.
Program. 6, 355–393 (2006)

81. Lu, J.J.: Logic programming with signs and annotations. J. Log. Comput. 6(6), 755–778 (1996)
82. Lu, J.J., Calmet, J., Schü, J.: Computing multiple-valued logic programs. Mathw. Soft Comput.

2(4), 129–153 (1997)
83. Lukasiewicz, T.: Many-valued first-order logics with probabilistic semantics. In: Proceedings of

the Annual Conference of the European Association for Computer Science Logic (CSL’98).
Lecture Notes in Computer Science, no. 1584, pp. 415–429. Springer, Berlin Heidelberg
New York (1998)

84. Lukasiewicz, T.: Probabilistic logic programming. In: Proc. of the 13th European Conf. on
Artificial Intelligence (ECAI-98), Brighton (England), pp. 388–392 (1998, August)

85. Lukasiewicz, T.: Many-valued disjunctive logic programs with probabilistic semantics. In: Pro-
ceedings of the 5th International Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR’99). Lecture Notes in Computer Science, no. 1730, pp. 277–289. Springer,
Berlin Heidelberg New York (1999)

86. Lukasiewicz, T.: Probabilistic and truth-functional many-valued logic programming. In: The
IEEE International Symposium on Multiple-Valued Logic, pp. 236–241. IEEE, Piscataway
(1999)

87. Lukasiewicz, T.: Fixpoint characterizations for many-valued disjunctive logic programs with
probabilistic semantics. In: Proceedings of the 6th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR-01). Lecture Notes in Artificial Intelligence,
no. 2173, pp. 336–350. Springer, Berlin Heidelberg New York (2001)

88. Lukasiewicz, T.: Probabilistic logic programming under inheritance with overriding. In:
Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence (UAI-01),
San Francisco, CA, USA, pp. 329–336. Morgan Kaufmann, San Francisco (2001)

89. Lukasiewicz, T.: Probabilistic logic programming with conditional constraints. ACM Trans.
Comput. 2(3), 289–339 (2001)

90. Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs under the
answer semantics for the semantic web. In: Proceedings of the First International Conference

Semantics, answering and logic programs over lattices 415

on Web Reasoning and Rule Systems (RR-07). Lecture Notes in Computer Science, no. 4524,
pp. 289—298. Springer, Berlin Heidelberg New York (2007)

91. Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under vagueness for
the semantic web. In: Proceedings of the 1st International Conference on Scalable Uncertainty
Management (SUM-07). Lecture Notes in Computer Science, no. 4772, pp. 16–30. Springer,
Berlin Heidelberg New York (2007)

92. Magrez, P., Smets, P.: Fuzzy modus ponens: a new model suitable for applications in knowledge-
based systems. Int. J. Intell. Syst. 4, 181–200 (1989)

93. Majkic, Z.: Coalgebraic semantics for logic programs. In: 18th Workshop on (Constraint) Logic
Programming ((W(C)LP-05), Ulm, May 2004

94. Majkic, Z.: Many-valued intuitionistic implication and inference closure in a bilattice-based
logic. In: 35th International Symposium on Multiple-Valued Logic (ISMVL-05), no. 214–220,
Calgary, 19–21 May 2005

95. Majkic, Z.: Truth and knowledge fixpoint semantics for many-valued logic programming. In:
19th Workshop on (Constraint) Logic Programming ((W(C)LP-05), no. 76–87, Ulm, 21–25
February 2005

96. Marek, V.W., Truszczyński, M.: Logic programming with costs. Technical report, University of
Kentucky. ftp://al.cs.engr.uky.edu/cs/manuscripts/lp-costs.ps (2000)

97. Martin, T.P., Baldwin, J.F., Pilsworth, B.W.: The implementation of FProlog –a fuzzy prolog
interpreter. Fuzzy Sets Syst. 23(1), 119–129 (1987)

98. Martin, T.P.: Soft computing, logic programming and the semantic web. In: Proceedings of the
10th International Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, (IPMU-04), pp. 815–822, Perugia, 4–9 July 2004

99. Mateis, C.: Extending disjunctive logic programming by t-norms. In: Proceedings of the 5th
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-
99). Lecture Notes in Computer Science, no. 1730, pages 290–304. Springer, Berlin Heidelberg
New York (1999)

100. Mateis, C.: Quantitative disjunctive logic programming: semantics and computation. AI Com-
mun. 13, 225–248 (2000)

101. Medina, J., Ojeda-Aciego, M.: Multi-adjoint logic programming. In: Proceedings of the 10th
International Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, (IPMU-04), pp. 823–830, Perugia, 4–9 July 2004

102. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Multi-adjoint logic programming with continuous
semantics. In: Proceedings of the 6th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR-01). Lecture Notes in Artificial Intelligence, vol. 2173,
pp. 351–364. Springer, Berlin Heidelberg New York (2001)

103. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A procedural semantics for multi-adjoint logic pro-
gramming. In: Proceedings of the10th Portuguese Conference on Artificial Intelligence on
Progress in Artificial Intelligence, Knowledge Extraction, Multi-agent Systems, Logic Program-
ming and Constraint Solving, pp. 290–297. Springer, Berlin Heidelberg New York (2001)

104. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach.
Fuzzy Sets Syst. 1(146), 43–62 (2004)

105. Minker, J.: On indefinite data bases and the closed world assumption. In: Proc. of the 6th Conf.
on Automated Deduction (CADE-82). Lecture Notes in Computer Science, no. 138. Springer,
Berlin Heidelberg New York (1982)

106. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Proceedings of the 5th Inter-
national Workshop on Inductive Logic Programming, p. 29. Department of Computer Science,
Katholieke Universiteit Leuven (1995)

107. Mukaidono, M.: Foundations of fuzzy logic programming. In: Advances in Fuzzy Systems—
Application and Theory, vol. 1. World Scientific, Singapore (1996)

108. Mukaidono, M., Shen, Z., Ding, L.: Fundamentals of fuzzy prolog. Int. J. Approx. Reason. 3(2),
179–193 (1989)

109. Ng, R., Subrahmanian, V.S.: Stable model semantics for probabilistic deductive databases. In:
Ras, Z.W., Zemenkova, M. (eds.) Proc. of the 6th Int. Sym. on Methodologies for Intelligent
Systems (ISMIS-91). Lecture Notes in Artificial Intelligence, no. 542, pp. 163–171. Springer,
Berlin Heidelberg New York (1991)

110. Ng, R., Subrahmanian, V.S.: Probabilistic logic programming. Inf. Comput. 101(2), 150–201
(1993)

ftp://al.cs.engr.uky.edu/cs/manuscripts/lp-costs.ps

416 Y. Loyer, U. Straccia

111. Ng, R., Subrahmanian, V.S.: Stable model semantics for probabilistic deductive databases. Inf.
Comput. 110(1), 42–83 (1994)

112. Ngo, L.: Probabilistic disjunctive logic programming. In: Uncertainty in Artificial Intelligence:
Proceedings of the Twelfeth Conference (UAI-1996), San Francisco, CA, pp. 397–404. Morgan
Kaufmann, San Francisco (1996)

113. Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic knowledge bases.
Theor. Comput. Sci. 171(1–2), 147–177 (1997)

114. Nicolas, P., Garcia, L., Stéphan, I.: Possibilistic stable models. In: Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI-05), pp. 248–253. Morgan
Kaufmann, San Francisco (2005)

115. Paulik, L.: Best possible answer is computable for fuzzy sld-resolution. In: Hajék, P. (ed.) Gödel
96: Logical Foundations of Mathematics, Computer Science, and Physics. Lecture Notes in
Logic, no. 6, pp. 257–266. Springer, Berlin Heidelberg New York (1996)

116. Poole, D.: Probabilistic horn abduction and bayesian networks. Artif. Intell. 64(1), 81–129
(1993)

117. Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif.
Intell. 94(1–2), 7–56 (1997)

118. Rhodes, P.C., Merad Menani, S.: Towards a fuzzy logic programming system: a clausal form
fuzzy logic. Knowl.-Based Syst. 8(4), 174–182 (1995)

119. Rounds, W.C., Zhang, G.-Q.: Clausal logic and logic programming in algebraic domains. Inf.
Comput. 171, 183–200 (2001)

120. Schroeder, M., Schweimeier, R.: Fuzzy argumentation and extended logic programming. In:
Proceedings of ECSQARU Workshop Adventures in Argumentation, Toulouse, September
2001

121. Schroeder, M., Schweimeier, R.: Arguments and misunderstandings: Fuzzy unification for nego-
tiating agents. In: Proceedings of the ICLP workshop CLIMA02. Elsevier, Amsterdam (2002)

122. Schroeder, M., Schweimeier, R.: Fuzzy unification and argumentation for well-founded seman-
tics. In: Proceedings of the Conference on Current Trends in Theory and Practice of Informatics
(SOFSEM-04). Lecture Notes in Computer Science, no. 2932, pp. 102–121. Springer, Berlin
Heidelberg New York (2004)

123. Sessa, M.I.: Approximate reasoning by similarity-based sld resolution. Theor. Comput. Sci. 275,
389–426 (2002)

124. Shapiro, E.Y.: Logic programs with uncertainties: a tool for implementing rule-based systems.
In: Proceedings of the 8th International Joint Conference on Artificial Intelligence (IJCAI-83),
pp. 529–532, Karlsruhe, 8–12 August 1983

125. Shen, Z., Ding, L., Mukaidono, L.: A theoretical framework of fuzzy prolog machine. In: Fuzzy
Computing, pp. 89–100. Elsevier, Amsterdam (1988)

126. Straccia, U.: Query answering in normal logic programs under uncertainty. In: 8th
European Conferences on Symbolic and Quantitative Approaches to Reasoning with Un-
certainty (ECSQARU-05). Lecture Notes in Computer Science, Barcelona, Spain, no. 3571,
pp. 687–700. Springer, Berlin Heidelberg New York (2005)

127. Straccia, U.: Uncertainty management in logic programming: Simple and effective top-down
query answering. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) 9th International Conference
on Knowledge-Based & Intelligent Information & Engineering Systems (KES-05), Part II.
Lecture Notes in Computer Science, Melbourne, Australia, no. 3682, pp. 753–760. Springer,
Berlig Heidelberg New York (2005)

128. Straccia, U.: Annotated answer set programming. In: Proceedings of the 11th International
Conference on Information Processing and Management of Uncertainty in Knowledge-Based
Systems, (IPMU-06), pp. 1212–1219. E.D.K., Paris (2006)

129. Straccia, U.: Query answering under the any-world assumption for normal logic programs. In:
Proceedings of the 10th International Conference on Principles of Knowledge Representation
(KR-06), pp. 329–339. AAAI, Menlo Park (2006)

130. Straccia, U.: Towards top-k query answering in deductive databases. In: Proceedings of the 2006
IEEE International Conference on Systems, Man and Cybernetics (SMC-06), pp. 4873–4879.
IEEE, Piscataway (2006)

131. Straccia, U.: A top-down query answering procedure for normal logic programs under the
any-world assumption. In: Proceedings of the 9th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-07). Lecture Notes in
Computer Science, no. 4724, pp. 115–127. Springer, Berlin Heidelberg New York (2007)

Semantics, answering and logic programs over lattices 417

132. Straccia, U.: Towards vague query answering in logic programming for logic-based informa-
tion retrieval. In: World Congress of the International Fuzzy Systems Association (IFSA-07).
Lecture Notes in Computer Science, Cancun, Mexico, no. 4529, pp. 125–134. Springer, Berlin
Heidelberg New York (2007)

133. Subramanian, V.S.: On the semantics of quantitative logic programs. In: Proc. 4th IEEE Symp.
on Logic Programming, pp. 173–182. Computer Society Press, Los Angeles (1987)

134. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5, 285–309
(1955)

135. Turner, H.: Signed logic programs. In: Bruynooghe, M. (ed.) Logic Programming: Proc. of the
1994 International Symposium, pp. 61–75. MIT, Piscataway (1994)

136. Ullman, J.D.: Principles of Database and Knowledge Base Systems, vols. 1,2. Computer Science
Press, Potomac (1989)

137. van Emden, M.H.: Quantitative deduction and its fixpoint theory. J. Log. Program. 4(1), 37–53
(1986)

138. van Gelder, A., Ross, K.A., Schlimpf, J.S.: The well-founded semantics for general logic pro-
grams. J. ACM. 38(3), 620–650 (1991)

139. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In:
20th International Conference on Logic Programming (ICLP-04). Lecture Notes in Computer
Science, vol. 3132, pp. 431–445. Springer, Berlin Heidelberg New York (2004)

140. Vojtáš, P.: Fuzzy logic programming. Fuzzy Sets Syst. 124, 361–370 (2001)
141. Vojtáš, P., Paulík, L.: Soundness and completeness of non-classical extended SLD-resolution.

In: 5th International Workshop on Extensions of Logic Programming (ELP’96). Lecture Notes
in Artificial Intelligence, no. 1050, pp. 289–301, Leipzig, 28–30 March 1996

142. Vojtáš, P., Vomelelová, M.: Transformation of deductive and inductive tasks between models
of logic programming with imperfect information. In: Proceedings of the 10th International
Conference on Information Processing and Management of Uncertainty in Knowledge-Based
Systems, (IPMU-04), pp. 839–846, Perugia, 4–9 July 2004

143. Wagner, G.: Negation in fuzzy and possibilistic logic programs. In: Martin, T., Arcelli, F. (eds.)
Logic Programming and Soft Computing. Research Studies, Taunton (1998)

144. Warren, D.S.: Memoing for logic programs. Commun. ACM. 35(3), 93–111 (1992)
145. Wüttrich, B.: Probabilistic knowledge bases. IEEE Trans. Knowl. Data Eng. 7(5), 691–698

(1995)
146. Yasui, H., Hamada, Y., Mukaidono, M.: Fuzzy prolog based on lukasiewicz implication and

bounded product. IEEE Trans. Fuzzy Syst. 2, 949–954 (1995)

	Approximate well-founded semantics, query answering and generalized normal logic programs over lattices
	Abstract
	Introduction
	Preliminaries
	Intended semantics of normal logic programs
	Top-down query answering
	Query answering: approximate Kripke-Kleene semantics
	Query answering: approximate well-founded semantics

	Related work
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

