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Abstract

Description Logic Programs (DLPs), which combine the expressive power
of classical description logics and logic programs, are emerging as an
important ontology description language paradigm. In this study, we
present fuzzy DLPs, which extend DLPs by allowing the representation
of vague/imprecise information.

1. Introduction

Rule-based and object-oriented techniques are rapidly making their
way into the infrastructure for representing and reasoning about the
Semantic Web: combining these two paradigms emerges as an impor-
tant objective.

Description Logic Programs (DLPs),1–7 which combine the
expressive power of classical Description Logics (DLs) and classi-
cal Logic Programs (LPs), are emerging as an important ontology
description language paradigm. DLs capture the meaning of the most
popular features of structured representation of knowledge, while LPs
are powerful rule-based representation languages.

In this work, we present fuzzy DLPs, which is a extension of DLPs
towards the representation of vague/imprecise information.

We proceed as follows. We first introduce the main notions related
to fuzzy DLs and fuzzy LPs, and then show how both can be
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integrated, defining fuzzy DLPs in Sec. 3. Section 4 concludes and
outlines future research.

2. Preliminaries

Fuzzy DLs. DLs8 are a family of logics for representing structured
knowledge. Each logic is identified by a name made of labels, which
identify the operators allowed in that logic. Major DLs are the so-
called logic ALC9 (Attributive Language with Complement) and is
used as a reference language whenever new concepts are introduced in
DLs, SHOIN (D), which is the logic behind the ontology description
language OWL DL and SHIF(D), which is the logic behind OWL
LITE, a slightly less expressive language than OWL DL (see Refs. 10
and 11).

Fuzzy DLs12,13 extend classical DLs by allowing to deal with
fuzzy/imprecise concepts. While in classical DLs concepts denotes
sets, in fuzzy DLs fuzzy concepts denote fuzzy sets.14

Syntax. While the method we rely on in combining fuzzy DLs with
fuzzy LPs does not depend on the particular fuzzy DL of choice, to
make the paper self-contained, we shall use here fuzzy ALC(D),15

which is fuzzy ALC12 extended with explicit represent membership
functions for modifiers (such as “very”) and vague concepts (such as
“Young”).15 We refer to Ref. 13 for fuzzy OWL DL and related work
on fuzzy DLs.

Fuzzy ALC(D) allows explicitly to represent membership functions
in the language via fuzzy concrete domains. A fuzzy concrete domain
(or simply fuzzy domain) is a pair 〈∆D,ΦD〉, where ∆D is an interpre-
tation domain and ΦD is the set of fuzzy domain predicates d with a
predefined arity n and an interpretation dD : ∆n

D → [0, 1], which is a
n-ary fuzzy relation over ∆D. To the ease of presentation, we assume
the fuzzy predicates have arity one, the domain is a subset of the
rational numbers Q and the range is [0, 1]Q = [0, 1] ∩ Q. Concerning
fuzzy predicates, there are many membership functions for fuzzy sets
membership specification. However (see Fig. 1), for k1 ≤ a < b ≤ c
< d ≤ k2 rational numbers, the trapezoidal trz(a, b, c, d, [k1, k2]), the
triangular tri(a, b, c, [k1, k2]), the left-shoulder ls(a, b, [k1, k2]), the
right-shoulder rs(a, b, [k1, k2]) and the crisp function cr(a, b, [k1, k2])
are simple, yet most frequently used to specify membership degrees
and are those we are considering in this paper. To simplify the nota-
tion, we may omit the domain range, and write, e.g. cr(a, b) in place
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of cr(a, b, [k1, k2]), whenever the domain range is not important. For
instance, the concept “less than 18 year old” can be defined as a crisp
concept cr(0, 18), while Young, denoting the degree of youngness of
a person’s age, may be defined as Young = ls(10, 30). We also con-
sider fuzzy modifiers in fuzzy ALC(D). Fuzzy modifiers, like very,
more or less and slightly, apply to fuzzy sets to change their
membership function. Formally, a modifier is a function fm : [0, 1] →
[0, 1]. For instance, we may define very(x) = lm(0.7, 0.49, 0, 1), while
define slightly(x) as lm(0.7, 0.49, 1, 0), where lm(a, b, c, d) is the
linear modifier in Fig. 1.

Now, let C, Ra, Rc, Ia, Ic and M be non-empty finite and pair-wise
disjoint sets of concepts names (denoted A), abstract roles names
(denoted R), concrete roles names (denoted T ), abstract constant
names (denoted a), concrete constant names (denoted c) and mod-
ifiers (denoted m). Ra contains a non-empty subset Fa of abstract
feature names (denoted r), while Rc contains a non-empty subset Fc

of concrete feature names (denoted t). Features are functional roles.
The set of fuzzy ALC(D) concepts is defined by the syntactic rules
(d is a unary fuzzy predicate) in Fig. 2. A TBox T consists of a finite
set of terminological axioms of the form C1 � C2 (C1 is sub-concept
of C2) or A = C (A is defined as the concept C), where A is a concept

Fig. 1. Membership functions and modifiers.

Fig. 2. ALC(D) concepts.
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name and C is concept. Using axioms we may define the concepts of
a minor and young person as

Minor = Person � ∃age.≤18, (1)
YoungPerson = Person � ∃age.Young. (2)

We also allow to formulate statements about constants. A concept-,
role-assertion axiom and an constant (in)equality axiom has the form
a : C (a is an instance of C), (a, b) : R (a is related to b via R), a ≈ b
(a and b are equal) and a 
≈ b, respectively, where a, b are abstract
constants. For n ∈ [0, 1]Q, an ABox A consists of a finite set of con-
stant (in)equality axioms, and fuzzy concept and fuzzy role assertion
axioms of the form 〈α, n〉, where α is a concept or role assertion.
Informally, 〈α, n〉 constrains the truth degree of α to be greater or
equal to n. A fuzzy ALC(D) knowledge base K = 〈T ,A〉 consists of a
TBox T and an ABox A.

Semantics. We recall here the main notions related to fuzzy DLs
(for more on fuzzy DLs, see Refs. 12 and 13). The main idea is that
an assertion a : C, rather being interpreted as either true or false,
will be mapped into a truth value c ∈ [0, 1]Q. The intended mean-
ing is that c indicates to which extend ‘a is a C’. Similarly for role
names. Formally, a fuzzy interpretation I with respect to a concrete
domain D is a pair I = (∆I , ·I) consisting of a non empty set ∆I
(called the domain), disjoint from ∆D, and of a fuzzy interpretation
function ·I that assigns (i) to each abstract concept C ∈ C a func-
tion CI : ∆I → [0, 1]; (ii) to each abstract role R ∈ Ra a function
RI : ∆I × ∆I → [0, 1]; (iii) to each abstract feature r ∈ Fa a partial
function rI : ∆I × ∆I → [0, 1] such that for all u ∈ ∆I there is an
unique w ∈ ∆I on which rI(u,w) is defined; (iv) to each abstract
constant a ∈ Ia an element in ∆I ; (v) to each concrete constant
c ∈ Ic an element in ∆D; (vi) to each concrete role T ∈ Rc a function
T I : ∆I × ∆D → [0, 1]; (vii) to each concrete feature t ∈ Fc a partial
function tI : ∆I × ∆D → [0, 1] such that for all u ∈ ∆I there is an
unique o ∈ ∆D on which tI(u, o) is defined; (viii) to each modifier
m ∈ M the function fm : [0, 1] → [0, 1]; (ix) to each unary concrete
predicate d the fuzzy relation dD : ∆D → [0, 1] and to ¬d the nega-
tion of dD. To extend the interpretation function to complex concepts,
we use so-called t-norms (interpreting conjunction), s-norms (inter-
preting disjunction), negation function (interpreting negation), and
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Lukasiewicz Logic Gödel Logic Product Logic “Zadeh semantics”

¬x 1 − x
if x = 0 then 1

else 0
if x = 0 then 1

else 0
1 − x

x ∧ y max(x + y − 1, 0) min(x, y) x · y min(x, y)
x ∨ y min(x + y, 1) max(x, y) x + y − x · y max(x, y)

x ⇒ y
if x ≤ y then 1

else 1 − x + y
if x ≤ y then 1

else y
if x ≤ y then 1

else y/x
max(1 − x, y)

Fig. 3. Typical connective interpretation.

implication function (interpreting implication).16 In Fig. 3 we report
most used combinations of norms.

The mapping ·I is then extended to concepts and roles as follows
(where u ∈ ∆I): �I(u) = 1, ⊥I(u) = 0,

(C1 � C2)
I(u)= C1

I(u) ∧ C2
I(u) (C1 � C2)

I(u) = C1
I(u) ∨ C2

I(u)

(¬C)I(u)=¬CI(u) (m(C))I(u) = fm(CI(u))

(∀R.C)I(u)= inf
w∈∆I RI(u, w) ⇒ CI(w) (∃R.C)I(u) = sup

w∈∆I RI(u, w) ∧ CI(w)

(∀T.D)I(u)= info∈∆D TI(u, o) ⇒ DI(o) (∃T.D)I(u) = supo∈∆D
TI(u, o) ∧ DI(o) .

The mapping ·I is extended to assertion axioms as follows (where
a, b ∈ Ia): (a : C)I = CI(aI) and ((a, b) : R)I = RI(aI , bI). The
notion of satisfiability of a fuzzy axiom E by a fuzzy interpre-
tation I, denoted I |= E, is defined as follows: I |= C1 � C2

iff for all u ∈ ∆I , C1
I(u) ≤ C2

I(u); I |= A = C iff for all
u ∈ ∆I , AI(u) = CI(u); I |= 〈α, n〉 iff αI ≥ n; I |= a ≈ b iff aI = bI ;
and I |= a 
≈ b iff aI 
= bI . The notion of satisfiability (is model)
of a knowledge base K = 〈T ,A〉 and entailment of an assertional
axiom is straightforward. Concerning terminological axioms, we also
introduce degrees of subsumption. We say that K entails C1 � C2

to degree n ∈ [0, 1], denoted K |= 〈C1 � C2, n〉 iff for every model I
of K, [infu∈∆I C1

I(u) ⇒ C2
I(u)] ≥ n.

Example 1.13 Consider the following simplified excerpt from a
knowledge base about cars:

SportsCar = ∃speed.very(High), 〈mg mgb : ∃speed.≤170, 1〉,
〈ferrari enzo : ∃speed.>350, 1〉, 〈audi tt : ∃speed. =243, 1〉 .

speed is a concrete feature. The fuzzy domain predicate High has
membership function High = rs(80, 250). It can be shown that K
entails the following three fuzzy axioms:

〈mg mgb : ¬SportsCar, 0.72〉, 〈ferrari enzo : SportsCar, 1〉, 〈audi tt : SportsCar, 0.92〉 .

Similarly, consider K with terminological axioms Eqs. (1) and (2).
Then under Zadeh logic K |= 〈Minor � YoungPerson, 0.5〉 holds.
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Finally, given K and an axiom α, it is of interest to com-
pute its best lower degree bound. The greatest lower bound of α
w.r.t. K, denoted glb(K, α), is glb(K, α) = sup{n : K |= 〈α, n〉}, where
sup ∅ = 0. Determining the glb is called the Best Degree Bound
(BDB) problem. For instance, the entailments in Example 1 are the
best possible degree bounds. Note that, K |= 〈α, n〉 iff glb(K, α) ≥ n.
Therefore, the BDB problem is the major problem we have to con-
sider in fuzzy ALC(D).
Fuzzy LPs. The management of imprecision in logic programming
has attracted the attention of many researchers and numerous frame-
works have been proposed. Essentially, they differ in the underlying
truth space (e.g. Fuzzy set theory,17−23Multi-valued logic24−40)and
how imprecision values, associated to rules and facts, are managed.

Syntax. We consider here a very general form of the rules39,40:
A ← f(B1, . . . , Bn), where f ∈ F is an n-ary computable monotone
function f : [0, 1]nQ → [0, 1]Q and Bi are atoms. Each rule may have
a different f . An example of rule is s ← min(p, q) ·max(¬r, 0.7) + v,
where p, q, r, s and v are atoms. Computationally, given an assign-
ment I of values to the Bi, the value of A is computed by stating
that A is at least as true as f(I(B1), . . . , I(Bn)). The form of the
rules is sufficiently expressive to encompass all approaches to fuzzy
logic programming we are aware of. We assume that the standard
functions ∧ (meet) and ∨ (join) belong to F . Notably, ∧ and ∨ are
both monotone. We call f ∈ F a truth combination function, or sim-
ply combination function.a We recall that an atom, denoted A, is an
expression of the form P (t1, . . . , tn), where P is an n-ary predicate
symbol and all ti are terms, i.e. a constant or a variable. A general-
ized normal logic program, or simply normal logic program, denoted
with P, is a finite set of rules. The Herbrand universe HP of P is
the set of constants appearing in P. If there is no constant symbol in
P then consider HP = {a}, where a is an arbitrary chosen constant.
The Herbrand base BP of P is the set of ground instantiations of
atoms appearing in P (ground instantiations are obtained by replac-
ing all variable symbols with constants of the Herbrand universe).
Given P, the generalized normal logic program P∗ is constructed as
follows: (i) set P∗ to the set of all ground instantiations of rules in

a Due to lack of space, we do not deal with non-monotonic negation here, though we can
managed is as in Ref. 40.



September 25,2007 16:48spi-b560 General Theory of Conditional Decomposable Information Measures 9in x 6in ch291st Reading

Fuzzy Description Logic Programs 9

P; (ii) if an atom A is not head of any rule in P∗, then add the
rule A ← 0 to P∗ (it is a standard practice in logic programming to
consider such atoms as false); (iii) replace several rules in P∗ having
same head, A ← ϕ1, A ← ϕ2, . . . with A ← ϕ1 ∨ϕ2 ∨ . . . (recall that
∨ is the join operator of the truth lattice in infix notation). Note that
in P∗, each atom appears in the head of exactly one rule.

Semantics. An interpretation I of a logic program is a mapping
from atoms to members of [0, 1]Q. I is extended from atoms to
the interpretation of rule bodies as follows: I(f(B1, . . . , Bn)) =
f(I(B1), . . . , I(Bn)). The ordering ≤ is extended from [0, 1]Q to the
set of all interpretations point-wise: (i) I1 ≤ I2 iff I1(A) ≤ I2(A), for
every ground atom A. With I⊥ we denote the bottom interpretation
under ≤ (it maps any atom into 0).

An interpretation I is a model of a logic program P, denoted by
I |= P, iff for all A ← ϕ ∈ P∗, I(ϕ) ≤ I(A) holds. The seman-
tics of a logic program P is determined by the least model of P,
MP = min{I : I |= P}. The existence and uniqueness of MP is guar-
anteed by the fixed-point characterization, by means of the immedi-
ate consequence operator ΦP . For an interpretation I, for any ground
atom A, ΦP(I)(A) = I(ϕ), where A ← ϕ ∈ P∗. We can show that
the function ΦP is monotone, the set of fixed-points of ΦP is a com-
plete lattice and, thus, ΦP has a least fixed-point and I is a model
of a program P iff I is a fixed-point of ΦP . Therefore, the minimal
model of P coincides with the least fixed-point of ΦP , which can be
computed in the usual way by iterating ΦP over I⊥.39,40

Example 2.23 In Ref. 23, Fuzzy Logic Programming is proposed,
where rules have the form A ← f(A1, . . . , An) for some specific f .
Reference 23 is just a special case of our framework. As an illustrative
example consider the following scenario. Assume that we have the
following facts, represented in the tables below. There are hotels and
conferences, their locations and the distance among locations.

HasLocationH
HotelID HasLocationH

h1 hl1

h2 hl2

.

.

.
.
.
.

HasLocationC
ConferenceID HasLocationC

c1 cl1

c2 cl2

.

.

.
.
.
.

Distance
HasLocationH HasLocationC Distance

hl1 cl1 300
hl1 cl2 500
hl2 cl1 750
hl2 cl2 750

.

.

.
.
.
.
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Now, suppose that our query is to find hotels close to the conference
venue, labeled c1. We may formulate our query as the rule:

Query(h) ← min(HasLocationH(h, hl), HasLocationC(c1, cl), Distance(hl, cl, d), Close(d)) ,

where Close(x) is defined as Close(x) = max(0, 1 − x/1000). As a
result to that query we get a ranked list of hotels.

3. Fuzzy DLPs

In this section we introduce fuzzy Description Logic Programs (fuzzy
DLPs), which are a combination of fuzzy DLs with fuzzy LPs. In
the classical semantics setting, there are mainly three approaches
(see Refs. 41 and 42, for an overview), the so-called axiom-based
approach (e.g. [6, 7]) and the DL-log approach (e.g. Refs. 2–4) and
the autoepistemic approach (e.g. Refs. 1 and 5). We are not going
to discuss in this section these approaches. The interested reader
may see Ref. 43. We just point out that in this paper we follow the
DL-log approach, in which rules may not modify the extension of
concepts and DL atoms and roles appearing the body of a rule act
as procedural calls to the DL component.

Syntax. We assume that the description logic component and the
rules component share the same alphabet of constants. Rules are as
for fuzzy LPs except that now atoms and roles may appear in the rule
body. We assume that no rule head atom belongs to the DL signature.
For ease the readability, in case of ambiguity, DL predicates will
have a DL superscript in the rules. Note that in Ref. 3 a concept
inclusion may appear in the body of the rule. We will not deal with
this feature. A fuzzy Description Logic Program (fuzzy DLP) is a
tuple DP = 〈K,P〉, where K is a fuzzy DL knowledge base and P is
a fuzzy logic program. For instance, the following is a fuzzy DLP:
LowCarPrize(x) ← min(made by(x, y), ChineseCarCompanyDL(y)), has prize(x, z), LowPrizeDL(z)

made by(x, y) ← makesDL(y, x),
LowPrize = ls(5.000, 15.000)
ChineseCarCompany = (∃has location.China) � (∃makes.Car)

meaning: A chinese car company is located in china, makes cars,
which are sold as low prize cars. Low prize is defined as a fuzzy
concept with left-shoulder membership function.

Semantics. We recall that in the DL-log approach, a DL atom
appearing in a rule body acts as a query to the underlying DL knowl-
edge base (see Ref. 3). So, consider a fuzzy DLP DP = 〈K,P〉. The
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Herbrand universe of P, denoted HP is the set of constants appearing
in DP (if no such constant symbol exists, HP = {c} for an arbitrary
constant symbol c from the alphabet of constants). The Herbrand
base of P, denoted BP , is the set of all ground atoms built up from
the non-DL predicates and the Herbrand universe of P. Then, the
definition of P∗ is as for fuzzy LPs. An interpretation I w.r.t. DP is
a function I : BP → [0, 1]Q mapping non-DL atoms into [0, 1]Q. We
say that I is a model of a DP = 〈K,P〉 iff IK |=K P, where

(1) IK |= P iff for all A ← ϕ ∈ P∗, IK(ϕ) ≤ IK(A);
(2) IK(f(A1, . . . , An)) = f(IK(A1), . . . , IK(An);
(3) IK(P (t1, . . . , tn)) = I(P (t1, . . . , tn)) for all ground non-DL atoms

P (t1, . . . , tn);
(4) IK(A(a)) = glb(K, a : A) for all ground DL atoms A(a);
(5) IK(R(a, b)) = glb(K, (a, b) : R) for all ground DL roles R(a, b).

Note how in Points (4) and (5) the interpretation of a DL-atom
and role depends on the DL-component only. Finally, we say that
DP = 〈K,P〉 entails a ground atom A, denoted DP |= A, iff I |= A
whenever I |= DP .

For instance, assume that together with the DP about low prize
cars we have the following instances, where l1 and l2 are located in
China and car1 and car2 are cars.

CarCompany
CarCompany has location

c1 l1

c2 l2

.

.

.
.
.
.

Makes
CarCompany makes

c1 car1

c2 car2

.

.

.
.
.
.

Prize
Car prize

car1 10.000
car2 7.500

.

.

.
.
.
.

LowPrizeCar
Car LowPrizeDegree

car1 0.5
car2 0.75

.

.

.
.
.
.

If the prizes are as in the table above then the degree of the car
prizes is depicted in the right table. Note that due to the definition
of chinese car companies, c1 and c2 are chinese car companies.

Interestingly, it is possible to adapt the standard results of Data-
log to our case, which say that a satisfiable description logic program
DP has a minimal model MDP and entailment (logical consequence)
can be reduced to model checking in this minimal model.

Proposition 1. Let DP = 〈K,P〉 be a fuzzy DLP. If DP is
satisfiable, then there exists a unique model MDP such that MDP ≤ I
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for all models I of DP . Furthermore, for any ground atom A,
DP |= A iff MDP |= A.

The minimal model can be computed as the least fixed-point of
the following monotone operator. Let DP = 〈K,P〉 be a fuzzy DLP.
Define the operator TDP on interpretations as follows: for every inter-
pretation I, for all ground atoms A ∈ BP , given A ← ϕ ∈ P∗,
let TDP (I)(A) = IK(ϕ). Then it can easily be shown that TDP is
monotone, i.e. I ≤ I ′ implies TDP (I) ≤ TDP (I ′), and, thus, by the
Knaster-Tarski Theorem TDP has a least fixed-point, which can be
computed as a fixed-point iteration of TDP starting with I⊥.

Reasoning. From a reasoning point of view, to solve the entailment
problem we proceed as follows. Given DP = 〈K,P〉, we first com-
pute for all DL atoms A(a) occurring in P∗, the greatest truth lower
bound, i.e. nA(a) = glb(K, a : A). Then we add the rule A(a) ← nA(a)

to P, establishing that the truth degree of A(a) is at least nA(a) (sim-
ilarly for roles). Finally, we can rely on a theorem prover for fuzzy
LPs only either using a usual bottom-up computation or a top-down
computation for logic programs.23,24,39,40 Of course, one has to be
sure that both computations, for the fuzzy DL component and for
the fuzzy LP component, are supported. With respect to the logic
presented in this paper, we need the reasoning algorithm described
in Ref. 15 for fuzzy DLs componentb or the fuzzyDL system available
from Straccia’s home page, while we have to use Refs. 39 and 40 for
the fuzzy LP component.

We conclude by mentioning that by relying on Ref. 40, the whole
framework extends to fuzzy description normal logic programs as
well (non-monotone negation is allowed in the logic programming
component).

4. Conclusions

We integrated the management of imprecision into a highly expres-
sive family of representation languages, called fuzzy Description

b However, sub-concept specification in terminological axioms are of the form A � C

only, where A is a concept name and neither cyclic definitions are allowed nor may there
be more than one definition per concept name A.
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Logic Programs, resulting from the combination of fuzzy Descrip-
tion Logics and fuzzy Logic Programs. We defined syntax, seman-
tics, declarative and fixed-point semantics of fuzzy DLPs. We also
detailed how query answering can be performed by relying on the
combination of currently known algorithms, without any significant
additional effort.

Our motivation is inspired by its application in the Semantic Web,
in which both aspects of structured and rule-based representation of
knowledge are becoming of interest.44,45

There are some appealing research directions. At first, it would
certainly be of interest to investigate about reasoning algorithm
for fuzzy description logic programs under the so-called axiomatic
approach. Currently, very few is known about that. Secondly, while
there is a huge literature about fuzzy logic programming and many-
valued programming in general, very little is known in comparison
about fuzzy DLs. This area may deserve more attention.
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