Uncertainty Management in Logic Programming: Simple
and Effective Top-Down Query Answering

Umberto Straccia
ISTI - CNR, Via G. Moruzzi, 1 1-56124 Pisa (PI) ITALY

Abstract. We present a simple, yet general top-down query answering procedure for
logic programs managing uncertainty. The main featureq @réhe certainty values

are taken from a certainty latticéii) computable functions may appear in the rule
bodies to manipulate certainties; afidi) we solve the problem by a reduction to an
equational systems, for which we device a top-down procedure.

1 Introduction

The management of uncertainty in deduction systems is an important issue whenever the
real world information to be represented is of imperfect nature (which is likely the rule
rather than an exception). Classical logic programming, with its advantage of modularity
and its powerful top-down and bottom-up query processing techniques, has attracted the
attention of researchers and numerous frameworks have been proposed towards the man-
agement of uncertainty. Essentially, they differ in the underlying notion of uncertainty
(e.g. probability theory [10, 11], fuzzy set theory [13], multi-valued logic [3, 6, 7, 9], pos-
sibilistic logic [5]) and how uncertainty values, associated to rules and facts, are managed.
Roughly, these frameworks can be classified amaotation basedAB) andimplication
based(IB). In the AB approach (e.g. [6, 11]), a rule is of the fouta f (31, ..., 3,) «—

By: 1, ..., By By, which asserts “the certainty of atasnis atleast (oris in¥ (51, . . ., Bn),
whenever the certainty of atof; is at least (oris in}3;, 1 < i < n”. Here f is ann-ary
computable function angd; is either a constant or a variable ranging over an appropriate
certainty domain. In the IB approach (see [3, 7] for a more detailed comparison between
the two approaches), a rule is of the forin® B, ..., B,,, which says that the certainty
associated with the implicatioBi; A ... A B,, — A is a. Computationally, given an assign-
mentw of certainties to thd3;, the certainty ofd is computed by taking the “conjunction”

of the certainties/(B;) and then somehow “propagating” it to the rule head. The truth-
values are taken from a certainty lattice. More recently, [3, 7, 13] show that most of the
frameworks can be embedded into the IB framework (some exceptions deal with probabil-
ity theory). Usually, in order to answer to a query in such frameworks, we have to compute
the whole intended model by a bottom-up fixed-point computation and then answer with
the evaluation of the query in this model. This always requires to compute a whole model,
even if not all the atoms truth is required to determine the answer. To the best of our
knowledge the only work presenting top-down procedures are [4, 6, 7, 13].

In this paper we present a general, simple and effective top-down query answering
procedure for logic programs over lattices in the IB framework, which generalizes the
above cited works. The main features di¢the certainty values are taken from a certainty
lattice; (i¢) computable functions may appear in the rule bodies to manage these certainties
values; andiii) we solve the problem by a reduction to an equational systems over lattices,
for which we device a top-down procedure, which to the best of our knowledge is novel.

! See e.g. [12] for an extensive list of references

We proceed as follows. In the next section, we will briefly recall some preliminary
definitions. Section 3 is the main part of this work, where we present our top-down query
procedure and the computational complexity analysis, while Section 4 concludes.

2 Preliminaries

Certainty lattice. A certainty latticeis a complete lattic€ = (L, <), with L a countable
set of certainty values, bottor, top elementl’, meetA and joinv. The main idea is that
an statemenP(a), rather than being interpreted as either true or false, will be mapped into
a certainty value: in L. The intended meaning is thatndicates to which extend (how
certainitis that) P(a) is true. Typical certainty lattices are the followir(g) Classical 0-1:
Lo,1y corresponds to the classical truth-space, wiestands for ‘false’, whilel stands
for ‘true’. (ii) Fuzzy: L 1j,, which relies on the unit real interval, is quite frequently
used as certainty latticgiiz) Four-valued: another frequent certainty lattice is Belnap’s
FOUR [1], whereL is {f,t,u,i} with f < u < tandf < i < ¢. Here,u stands for
‘unknown’, whereas stands for inconsistency. We denote the lattic&€gs (iv) Many-
valued:L = ({0, -L5,... 2=2 1}, <), n positive integer. A special case s, whereL
is{f,1f,It,t} with f < 1f <t < t. Here,lf stands for ‘likely false’, whereas stands
for ‘likely true’. (v) Belief-Doubt: a further popular lattice allows us to reason abelief
and doubt Indeed, the idea is to take any latti€eand to consider the cartesian product
L x L. For any pair(b,d) € L x L, b indicates the degree tfelief a reasoning agent
has about a sentensewhile d indicates the degree afoubtthe agent has about The
order onL x L is determined byb, d) < (V/,d’) iff b <t/ andd’ < d, i.e. belief goes up,
while doubt goes down. The minimal elemen{j5¢) (no belief, maximal doubt), while
the maximal element i, f) (maximal belief, no doubt). We indicate this lattice with

In a complete latticeC = (L, <), a functionf: L — L is monotoneif Vz,y € L,
x <X yimplies f(z) = f(y). A fixed-pointof f is an element: € L such thatf(z) = x.
The basic tool for studying fixed-points of functions on lattices is the well-known Knaster-
Tarski theorem. Lef be a monotone function on a complete lattige <). Thenf has a
fixed-point, the set of fixed-points gfis a complete lattice and, thughas deastfixed-
point. Theleastfixed-point can be obtained by iteratirfgover L, i.e. is the limit of the
non-decreasing sequengg . .., Yi, Yi+1, - - - »Yx, - - -, Where for a successor ordinat 0,
yo = L, yir1 = f(y;), while for a limit ordinal, y, = lub<{y;:¢ < A\}. We denote the
least fixed-point by Ifpf). For ease, we will specify the initial conditiap and the next
iteration stepy;+1 only, while the condition on the limit is implicit.
Logic programs. Fix a lattice £ = (L, <). We extend standard logic programs [8] to
the case wherarbitrary computable functiong € F are allowed in rule bodies to ma-
nipulate the certainty values. In this paper we assumehit a family of continuous
n-ary functionsf: L" — L. That is, for any monotone chairy, x4, ...of values inL,
f(Vix;) = Vi f(x;). Then-ary casen > 1 is similar. We assume that the standard func-
tionsA andV belong toF. Notably,A andV are both continuous. For reasons of space, we
limit our attention to propositional logic programs. The first order case can be handled by
grounding. There exists free software (e.g. Lparse), which transforms a logic program with
variables into one with propositional variables only. So, consider an alphabet of proposi-
tional letters. Aratom denotedA is a propositional letter. Aormula, ¢, is an expression
built up from the atoms, the certainty values L of the lattice and the functiong € F.
Note that members of the lattice may appear in a formula, as well as functions: e.g. in
Lio,1)y» ¢ = min(p, q) - max(r,0.7) + v is a formula, where, ¢, r andv are atoms. The

intuition here is that the truth value of the formulén(p, ¢) - max(r,0.7) + v is obtained
by determining the truth value @f ¢, andv and then to apply the arithmetic functions
to determine the value @f. A rule is of the formA «— ¢, whereA is an atom and is

a formula. The atonH is called thehead and the formulap is called thebody A logic
program denoted withP, is a finite set of rules. Thelerbrand baseof P (denotedBp)

is the set of atoms occurring 1. GivenP, the setP* is constructed as follows;) if an
atom A is not head of any rule i®*, then add the rulel < L to P*; 2 and(ii) replace
several rules iP* having same head} «— ¢, A «— g, ...With A «— 1 V oo V
Note that inP*, each atom appears in the heaawréctly oneaule.

Example 1 ([9]) ConsiderLg ,j,, whereA = min andV = max. Consider an insurance
company, which has information about its customers used to determine the risk coeffi-
cient of each customer. Suppose a value of the risk coefficient is already known, but has
to be re-evaluated (the client is a new client and his risk coefficient is given by his prece-
dent insurance company). The company may hé\edata grouped into a set of facts
{(Experience(john) « 0.7, (Risk(john) « 0.5, (Sport_car(john) « 0.8}; and

(1) a set of rules, which after grounding are:

Good_driver(john) < Experience(john) A (0.5 - Risk(john))

Risk(john) «— 0.8 - Young(john)
Risk(john) «— 0.8 - Sport_car(john)
Risk(john) «— Experience(john) A (0.5 - Good_driver(john))

Interpretations. An interpretation] of a logic programon the latticel = (L, <) is a
mapping from atoms to membersbf! is extended from atoms to formulae as follois:
forc € L, I(c) = ¢; (i) for formulaep andy’, I(oA¢') = I(p) AI(¢’), and similarly for
v, and(iiq) for formulaef (), I(f(y)) = f(I(y¢)), and similarly forn-ary functions. The
ordering= is extended front to the sefZ (L) of all interpretations point-wiséi) I; < I

iff I;(A) < I,(A), for every ground atoral. We define(I; A I3)(A) = I (A) A I2(A)
and similarly forv. With I, we denote the bottom interpretation under(it maps any
atom into_L). It is easy to see thdZ (L), <) is a complete lattice as well.

Models. An interpretation/ is amodelof a logic progrant?, denoted byl |= P, iff for

all A — ¢ e P*, I(p) 2 I(A) holds.

Query. A query, denotedy, is an expression of the forfA (query aton), intended as a
guestion about the truth of the atamin the minimal model ofP (see below). We also
allow a query to be aet{?A4,,...,7A,} of query atoms. In that latter case we ask about
the truth of all the atomsl; in the minimal model ofP.

Semantics of logic programs.The semantics of a logic prografd is determined by
the least model o, Mp = min{I:I |= P}. Theexistence and uniqueness M is
guaranteed by the fixed-point characterization, by means ahtheediate consequence
operator@p. For an interpretatiod, for any ground atomd, &5 (I)(A) = I(y), where
A — ¢ € P*. We can show that the functiohp is continuous ovef (L), the set of
fixed-points of®, is a complete lattice undet and, thus@, has a least fixed-point and
1 is a model of a prograr® iff I is a fixed-point ofbp. Therefore, the minimal model of
P coincides with the least fixed-point @&, which can be computed in the usual way by
iterating®p overI; and is attained after at mast(the least limit ordinal) iterations.

Example 2 ConsiderLy 1, the functionf(z) = % 0<a<1laeQ),andP =
{A «— f(A)}. Then the minimal model is attained aftersteps ofd iterations starting
fromI, (A) =0andisMp(A) = a.

2 ltis a standard practice in logic programming to consider such atorfadsas

Example 3 Consider Example 1. It turns out that by a bottom-up computation the minimal
mode isMp, where (for ease, we use first letters onl)} (R(j)) = 0.64, Mp(S(j)) =
0.8, Mp(Y(j)) = 0, Mp(G(j)) = 0.32, Mp(E(j)) = 0.7.

3 Top-down query answering

Given a logic progranf, one way to answer to a quety is to compute the minimal
model Mp of P by a bottom-up fixed-point computation and then answer With(A).

This always requires to compute a whole model, even if in order to deterifingA),

not all the atom’s truth is required. Our goal is to present a general, simple, yet effective
top-down method, which relies on the computation of just a part of the minimal model.
Essentially, we will try to determine the value of a single atom by investigating only a part
of the prograniP. Our method is based on a transformation of a program into a system
of equations of monotonic functions over lattices for which we compute the least fixed-
point in a top-down style. The idea is the following. Lét= (L, <) be a lattice and

let P be a logic program. Consider the Herbrand b&se = {A;,..., A, } of P and
considerP*. Let us associate to each atofij € Bp a variablex;, which will take a
value in the domainl. (sometimes, we will refer to that variable withy as well). An
interpretation/ may be seen as an assignment of lattice values to the variaples x,,.

For the immediate consequence operatgr a fixed-point is such that= ¢, (1), i.e. for

all atomsA; € Bp, I(A;) = Pp(I)(A;). Therefore, we may identify the fixed-points of
&p as the solutions ovet of the system of equations of the following form:

r1 = fl(xll,"'7‘r1a1)’
(€]

Tn = fn(wnl,- . 7:Cna,n))

where forl <i <n,1 <k < q;, we havel < i, < n. Each variabler;, will take a
value in the domairl, each (continuous) functiofy determines the value aof; (i.e. A4;)
given an assignment(A;,) to each of thes; variablesz;, . The functionf; implements
&p(I)(A;). Forinstance, by considering the logic program in Example 1, the fixed-points
of the®dp operator are the solutions over a lattice of the system of equations

z() = 0.7, @5(5) = 0.8, @y(j) = 0, @e(y) = min{ae(y), 0.5z},

) 2
xr(y) = max{0.5,0.8 - zy(j), 0.8 - @55y, min{wg(j), 0.5 - ze(5)}} - @

It is easily verified that the least solution corresponds to the minimal model dhere-

fore, our general approach for query answering is as follows: given a logic prdgram
translate it into an equational system as (1) and then compute the answer in a top-down
manner. Formally, I[P be a logic program and considBr. As already pointed out, each
atom appears exactly once in the head of a rul®in The system of equations that we
build from P* is straightforward. Assign to each atafna variablex 4 and substitute in

P* each occurrence of with x 4. Finally, substitute each occurrenceefwith = and let

S(P) be the resulting equational system (see Equation 2). The answer of a query variable
?A w.r.t. a logic progranP is computed by the algorithifiolve(P, 7 A). It first computes

S(P) and then callSolve(S(P), {z4}), which will solve the equational system answer-

ing with the value forr 4. Therefore, query answering in logic programs reduces to query
answering in equational monotone systems of the form (1), which we address next. We
refer to the monotone system as in Equation (1) as the tipte (£, V, f), whereL is

a lattice,V = {z1,...,xz,} are the variables anfl = (f1, ..., f.) is the tuple of func-

tions. As it is well known, a monotonic equation systenjgshas a least solution, If),

which can be computed by a bottom-up evaluation. Indeed, the least fixed-pgfnisof
given as the least upper bound of the monotone sequgegce,. , y;, . . ., whereyy = L
andy;+1 = f(y:).
Our top-down procedure needs some auxiliary functieis) denotes the set aons

of z,i.e.s(z;) = {zi,,..., s, } (the set of variables appearing in the right hand side of
the definition ofxz;). p(x) denotes the set gfarentsof z, i.e. the sep(z) = {z;:x €
s(z;)} (the set of variables depending on the value:fin the general case, we assume
that each functiory;: L% +— L in Equation (1) is monotone. We also uggin place of
fi, for z = x;. Informally our algorithm works as follows. Assume we are interested in
the value ofzg in the least fixed-point of the system. We associate to each varialde
markingv(z;) denoting the current value af (the mappings contains the current value
associated to the variables). Initially(z;) is L. We start with puttinge in theactivelist
of variablesA, for which we evaluate whether the current value of the variable is identical
to whatever its right-hand side evaluates to. When evaluating a right-hand side it might of
course turn out that we do indeed need a better value of some sons, which will assumed to
have the valuel and put them on the list of active nodes to be examined. In doing so we
keep track of the dependencies between variables, and whenever it turns out that a variable
changes its value (actually, it can only increase) all variables that might depend on this
variable are put in the active set to be examined. At some point (even if cyclic definitions
are present) the active list will become empty and we have actually found part of the fixed-
point, sufficient to determine the value of the quegy The algorithm is given below.

Procedure Solve(S, Q)

Input: monotonic systens = (£, V, f), where@ C V is the set of query variables;

Output: AsetB C V, with @ C B such that the mappingequals Ifg /) on B.

1. A=Q,dg:=Q,in: =0, forall z € Vdov(z) = L, exp(z) =0
2. while A # () do

3. selectr; € A, A:= A\ {z;},dg: = dg U s(z;)

4. = fi(v(@i), s v(@i,,)

5. if r > v(x;) thenv(z;):=r, A:= AU (p(z;) Ndg) fi

6. ifnot exp(x;) thenexp(z;) = 1,A:=AU (s(z;) \ in), in: = in U s(z;) fi
od

The variableig collects the variables that may influence the value of the query variables,
the array variablexp traces the equations that has been “expanded” (body variables are
put into the active list), whilein keeps track of the variables that have been put into the
active list so far due to an expansion (to avoid, to put the same variable multiple times in
the active list due to function body expansion). The attentive reader will notice that the
Solve procedure is related to the so-calltbulationprocedures, like [2, 4]. Indeed, it is

a generalization of it to arbitrary monotone equational systems over lattices.

Example 4 Consider Example 1 and query variabtg ;) (we ask for the risk coefficient
of John). Below is a sequence$flve(S, {zr(;)}) computation. Each line is a sequence
of steps in the ‘while loop’. What is left unchanged is not reported.

1. A= {ar(y) }, xit = Tay), A= 0,dg: = {xr(5), Tv(5), Ts(y)s Te(5)» Tes) }» 7 = 0.5, v(ar(5)): = 0.5,
A= {zo(n}, exp(an(y)): = 1, A= {@v(5), s(5)s Te(s), To(s) }r 10: = {@v(5), Ts(5), Te(y), To()

it = Ty(5), A= {Zs(3), Ta(5); To(z) b, 7 = 0, exp(@y(y)) = 1

Tit= Xg(j), Ar= {:CE(j), l‘c(j>}, r:= 0.8, V(:L's(j>): =0.8,A:= {ZEE(J-), Ta(3)s l’R(j)}, exp(:vs(j)): =1
Tt = xg(3), A = {@e(3), Ta(y) 1> 7= 0.7, v(wg(5)): = 0.7, exp(xg(y)): = 1

Tt = Tg(y), At = {ar(y) } 1= 0.25, v(ze(y)): = 0.25, exp(zq(s)): = 1,

in: = {Zv(5), Ts(5)s Ta(5)s La(5)s Tacs) }

G Wi

6. €T = xa(j), A:= @, ri= 0.64, V(Z‘R<j)): = 0.64, A= {mc(j)}

7. xii= gy, Ar= 0,7:=0.32, V({EG(J-)): =0.32,A: = {.’L’R(j)}

8. xii= xg(y),Ar=0,r:=0.64

10. stop. return v(in particular, v(zy;)) = 0.64)

The fact that only a part of the model is computed becomes evident, as the computation
does not change if we add any prograthto P not containing atoms @®, while a bottom-

up computation will consideP’ as well.

GivenS = (L,V, f), whereL = (L, <), let h(L) be theheightof the truth-value sef,
i.e. the length of the longest strictly increasing chairLiminus 1, where the length of a
chainvy, ..., v,, ... is the cardinal{v1, ..., v, ...}|. The cardinal of a countable seX is
the least ordinak such thatn and X areequipollent i.e. there is a bijection from to
X. For instanceh(FOUR) = 2, while h(L 1},) = w. It can be shown that the above
algorithms answer correctly.

Proposition 5 Given monotone& = (£, V, f), then there is a limit ordinal such that

after |\| stepsSolve(S, Q) determines a seB C V, with @ C B such that the mapping
v equals Ifff) on B, i.e.vip = Ifp(f);z. As a consequence, &t and ?A be a logic

program and a query, respectively. Thefp(A) = Solve(P, {?A}) 2.

From a computational point of view, by means of appropriate data structures, the opera-
tions on4, v, dg, in, exp, p ands can be performed in constant time. Therefore, Step
O(]V]), all other steps, except Stepand Stept. areO(1). Let¢(f,) be the maximal cost

of evaluating functiory, on its arguments, so Stepis O(c(f,)). It remains to determine

the number of loops of Step In case the height(£) of the latticeL is finite, observe

that any variable is increasing in the order as it enters in the list (Step5.), except it
enters due to Stef., which may happen one time only. Therefore, each variapleill
appear inA at mosta; - (L) + 1 times, wherey; is the arity of f;, as a variable is only
re-entered inta if one of its son gets an increased value (which for each son only can hap-
penh(L) times), plus the additional entry due to Stef\s a consequence, the worst-case
complexity iSO(3 ", oy (c(fi) - (a; - h(£) + 1)). Therefore:

Proposition 6 Given monoton& = (L, V, f), where the computing cost of each function
in f is bounded by, the arity bounded by, and the height is bounded Iy then the
worst-case complexity of the algorithswlve is O(|V |cah).

In case the height of a lattice is not finite, the computation may not terminate after a
finite number of steps (see Example 2). Fortunately, under reasonable assumptions on the
functions, we may guarantee the terminatiorbofve (see [12]). For instance, a condition

that guarantees the termination$flve is inspired directly by [3]. On lattices, we say that

a functionf: L™ — L is boundedff f(z1,...,z,) < A;z;. Now, consider a monotone
system of equationS = (£, V, f). We say thalf is boundedff each f; is a composition

of functions, each of which is either bounded, or a constaitit or one ofv andA. For
instance, the function in Example 2 is not bounded, white, y) = max(0, z+y—1)A0.3
overLg 1, is. It can be shown that

Proposition 7 Given monoton& = (£, V, f) with f bounded, thebolve terminates.

Concerning the special case were the equational system is directly obtained from the trans-
lation of a logic program, we can avoid the cost of translafthinto S(P) as we can

% The extension to a set of query atoms is straightforward.

directly operate orP. So the cosO(|P|) can be avoided. In case the height of the lattice

is finite, from Proposition 6 it follows immediately that the worst-case complexity for top-
down query answering i©(|Bp|cah). Furthermore, often the cost of computing each of
the functions off » is in O(1). By observing thatBp|a is in O(|P|) we immediately have

that in this case the complexity @3(|P|k). It follows that over the latticec OUR (h = 2)

the top-down algorithm works ilinear time Moreover, if the height is a fixed parameter,

i.e. a constant, we can conclude that the additional expressive power of logic programs over
lattices (with functions with constant cost) does not increase the computational complexity
of classical propositional logic programs, whicHirgear The computational complexity

of the case where the height of the lattice is not finite is determined by Proposition 7. In
general, the continuity of the functionsdi{P) guarantees the termination after at most
steps.

4 Conclusions

We have presented a simple, general, yet effective top-down algorithm to answer queries
for logic programs over lattices with arbitrary continues functions in the body to manip-
ulate uncertainty values. We believe that its interest relies on its easiness for an effective
implementation and the fact that many approaches to uncertainty management in logic
programming are based on lattices, respectively.

References

1. N. D. Belnap. A useful four-valued logic. In G. Epstein and J. Michael Dunn, ediktodern
uses of multiple-valued logipages 5-37. Reidel, Dordrecht, NL, 1977.
2. W.Chenand D. S. Warren. Tabled evaluation with delaying for general logic prograuraal
of the ACM 43(1):20-74, 1996.
3. C. Viegas Darasio, J. Medina, and M. Ojeda Aciego. Sorted multi-adjoint logic programs:
Termination results and applications. In LNCS 3229, pages 252—-265. Springer Verlag, 2004.
4. C. Viegas Darasio, J. Medina, and M. Ojeda Aciego. A tabulation proof procedure for residu-
ated logic programming. IRroc. of European Conf. on Atrtificial Intelligence (ECAI-02D04.
5. D. Dubois, J. Lang, and H. Prade. Towards possibilistic logic programmirigron of the 8th
Int. Conf. on Logic Programming (ICLP-91pages 581-595. The MIT Press, 1991.
6. M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logic programming and its
applications.Journal of Logic Programmingl2:335-367, 1992.
7. L. V.S. Lakshmanan and N. Shiri. A parametric approach to deductive databases with uncer-
tainty. IEEE Transactions on Knowledge and Data Engineerit§(4):554-570, 2001.
. J. W. Lloyd. Foundations of Logic Programmingpringer, Heidelberg, RG, 1987.
9. Y. Loyer and U. Straccia. The approximate well-founded semantics for logic programs with
uncertainty. In LNCS 2747, pages 541-550, 2003. Springer-Verlag.
10. T. Lukasiewicz. Probabilistic logic programming. Mmoc. of the 13th European Conf. on
Artificial Intelligence (ECAI-98)pages 388—392, 1998.
11. R.Ngand V.S. Subrahmanian. Probabilistic logic programniirigrmation and Computatign
101(2):150-201, 1993.
12. U. Straccia. Top-down query answering for logic programs over bilattices. Technical Report
2004-TR-62, Istituto di Scienza e Tecnologie dell’'Informazione, CNR, Pisa, Italy, 2004.
13. P. \Voj8S. Fuzzy logic programmindzuzzy Sets and Systerii24:361-370, 2004.

[0o]

