
Uncertainty Management in Logic Programming: Simple
and Effective Top-Down Query Answering

Umberto Straccia
ISTI - CNR, Via G. Moruzzi, 1 I-56124 Pisa (PI) ITALY

Abstract. We present a simple, yet general top-down query answering procedure for
logic programs managing uncertainty. The main features are:(i) the certainty values
are taken from a certainty lattice;(ii) computable functions may appear in the rule
bodies to manipulate certainties; and(iii) we solve the problem by a reduction to an
equational systems, for which we device a top-down procedure.

1 Introduction

The management of uncertainty in deduction systems is an important issue whenever the
real world information to be represented is of imperfect nature (which is likely the rule
rather than an exception). Classical logic programming, with its advantage of modularity
and its powerful top-down and bottom-up query processing techniques, has attracted the
attention of researchers and numerous frameworks have been proposed towards the man-
agement of uncertainty. Essentially, they differ in the underlying notion of uncertainty1

(e.g. probability theory [10, 11], fuzzy set theory [13], multi-valued logic [3, 6, 7, 9], pos-
sibilistic logic [5]) and how uncertainty values, associated to rules and facts, are managed.
Roughly, these frameworks can be classified intoannotation based(AB) and implication
based(IB). In the AB approach (e.g. [6, 11]), a rule is of the formA: f(β1, . . . , βn) ←
B1:β1, . . . , Bn:βn, which asserts “the certainty of atomA is at least (or is in)f(β1, . . . , βn),
whenever the certainty of atomBi is at least (or is in)βi, 1 ≤ i ≤ n”. Heref is ann-ary
computable function andβi is either a constant or a variable ranging over an appropriate
certainty domain. In the IB approach (see [3, 7] for a more detailed comparison between
the two approaches), a rule is of the formA

α← B1, ..., Bn, which says that the certainty
associated with the implicationB1∧ ...∧Bn → A is α. Computationally, given an assign-
mentv of certainties to theBi, the certainty ofA is computed by taking the “conjunction”
of the certaintiesv(Bi) and then somehow “propagating” it to the rule head. The truth-
values are taken from a certainty lattice. More recently, [3, 7, 13] show that most of the
frameworks can be embedded into the IB framework (some exceptions deal with probabil-
ity theory). Usually, in order to answer to a query in such frameworks, we have to compute
the whole intended model by a bottom-up fixed-point computation and then answer with
the evaluation of the query in this model. This always requires to compute a whole model,
even if not all the atoms truth is required to determine the answer. To the best of our
knowledge the only work presenting top-down procedures are [4, 6, 7, 13].

In this paper we present a general, simple and effective top-down query answering
procedure for logic programs over lattices in the IB framework, which generalizes the
above cited works. The main features are:(i) the certainty values are taken from a certainty
lattice;(ii) computable functions may appear in the rule bodies to manage these certainties
values; and(iii) we solve the problem by a reduction to an equational systems over lattices,
for which we device a top-down procedure, which to the best of our knowledge is novel.

1 See e.g. [12] for an extensive list of references

We proceed as follows. In the next section, we will briefly recall some preliminary
definitions. Section 3 is the main part of this work, where we present our top-down query
procedure and the computational complexity analysis, while Section 4 concludes.

2 Preliminaries

Certainty lattice. A certainty latticeis a complete latticeL = 〈L,�〉, with L a countable
set of certainty values, bottom⊥, top element>, meet∧ and join∨. The main idea is that
an statementP (a), rather than being interpreted as either true or false, will be mapped into
a certainty valuec in L. The intended meaning is thatc indicates to which extend (how
certainit is that)P (a) is true. Typical certainty lattices are the following.(i) Classical 0-1:
L{0,1} corresponds to the classical truth-space, where0 stands for ‘false’, while1 stands
for ‘true’. (ii) Fuzzy:L[0,1]Q , which relies on the unit real interval, is quite frequently
used as certainty lattice.(iii) Four-valued: another frequent certainty lattice is Belnap’s
FOUR [1], whereL is {f, t, u, i} with f � u � t andf � i � t. Here,u stands for
‘unknown’, whereasi stands for inconsistency. We denote the lattice asLB . (iv) Many-
valued:L = 〈{0, 1

n−1 , . . . n−2
n−1 , 1},≤〉, n positive integer. A special case isL4, whereL

is {f, lf, lt, t} with f � lf � lt � t. Here,lf stands for ‘likely false’, whereaslt stands
for ‘likely true’. (v) Belief-Doubt: a further popular lattice allows us to reason aboutbelief
and doubt. Indeed, the idea is to take any latticeL, and to consider the cartesian product
L × L. For any pair(b, d) ∈ L × L, b indicates the degree ofbelief a reasoning agent
has about a sentences, while d indicates the degree ofdoubt the agent has abouts. The
order onL×L is determined by(b, d) � (b′, d′) iff b � b′ andd′ � d, i.e. belief goes up,
while doubt goes down. The minimal element is(f, t) (no belief, maximal doubt), while
the maximal element is(t, f) (maximal belief, no doubt). We indicate this lattice with̄L.

In a complete latticeL = 〈L,�〉, a functionf :L → L is monotone, if ∀x, y ∈ L,
x � y impliesf(x) � f(y). A fixed-pointof f is an elementx ∈ L such thatf(x) = x.
The basic tool for studying fixed-points of functions on lattices is the well-known Knaster-
Tarski theorem. Letf be a monotone function on a complete lattice〈L,�〉. Thenf has a
fixed-point, the set of fixed-points off is a complete lattice and, thus,f has aleastfixed-
point. Theleastfixed-point can be obtained by iteratingf over⊥, i.e. is the limit of the
non-decreasing sequencey0, . . . ,yi, yi+1, . . . ,yλ, . . . , where for a successor ordinali ≥ 0,
y0 = ⊥, yi+1 = f(yi), while for a limit ordinalλ, yλ = lub�{yi: i < λ}. We denote the
least fixed-point by lfp(f). For ease, we will specify the initial conditiony0 and the next
iteration stepyi+1 only, while the condition on the limit is implicit.
Logic programs. Fix a latticeL = 〈L,�〉. We extend standard logic programs [8] to
the case wherearbitrary computable functionsf ∈ F are allowed in rule bodies to ma-
nipulate the certainty values. In this paper we assume thatF is a family of continuous
n-ary functionsf :Ln → L. That is, for any monotone chainx0, x1, . . . of values inL,
f(∨ixi) = ∨if(xi). Then-ary casen > 1 is similar. We assume that the standard func-
tions∧ and∨ belong toF . Notably,∧ and∨ are both continuous. For reasons of space, we
limit our attention to propositional logic programs. The first order case can be handled by
grounding. There exists free software (e.g. Lparse), which transforms a logic program with
variables into one with propositional variables only. So, consider an alphabet of proposi-
tional letters. Anatom, denotedA is a propositional letter. Aformula, ϕ, is an expression
built up from the atoms, the certainty valuesc ∈ L of the lattice and the functionsf ∈ F .
Note that members of the lattice may appear in a formula, as well as functions: e.g. in
L[0,1]Q , ϕ = min(p, q) ·max(r, 0.7) + v is a formula, wherep, q, r andv are atoms. The

intuition here is that the truth value of the formulamin(p, q) ·max(r, 0.7) + v is obtained
by determining the truth value ofp, q, r andv and then to apply the arithmetic functions
to determine the value ofϕ. A rule is of the formA ← ϕ, whereA is an atom andϕ is
a formula. The atomA is called thehead, and the formulaϕ is called thebody. A logic
program, denoted withP, is a finite set of rules. TheHerbrand baseof P (denotedBP)
is the set of atoms occurring inP. GivenP, the setP∗ is constructed as follows;(i) if an
atomA is not head of any rule inP∗, then add the ruleA ← ⊥ to P∗; 2 and(ii) replace
several rules inP∗ having same head,A ← ϕ1, A ← ϕ2, . . . with A ← ϕ1 ∨ ϕ2 ∨
Note that inP∗, each atom appears in the head ofexactly onerule.

Example 1 ([9]) ConsiderL[0,1]Q , where∧ = min and∨ = max. Consider an insurance
company, which has information about its customers used to determine the risk coeffi-
cient of each customer. Suppose a value of the risk coefficient is already known, but has
to be re-evaluated (the client is a new client and his risk coefficient is given by his prece-
dent insurance company). The company may have:(i) data grouped into a set of facts
{(Experience(john) ← 0.7, (Risk(john) ← 0.5, (Sport car(john) ← 0.8}; and
(ii) a set of rules, which after grounding are:

Good driver(john) ← Experience(john) ∧ (0.5 · Risk(john))
Risk(john) ← 0.8 · Young(john)
Risk(john) ← 0.8 · Sport car(john)
Risk(john) ← Experience(john) ∧ (0.5 · Good driver(john))

Interpretations. An interpretationI of a logic programon the latticeL = 〈L,�〉 is a
mapping from atoms to members ofL. I is extended from atoms to formulae as follows:(i)
for c ∈ L, I(c) = c; (ii) for formulaeϕ andϕ′, I(ϕ∧ϕ′) = I(ϕ)∧I(ϕ′), and similarly for
∨; and(iii) for formulaef(ϕ), I(f(ϕ)) = f(I(ϕ)), and similarly forn-ary functions. The
ordering� is extended fromL to the setI(L) of all interpretations point-wise:(i) I1 � I2

iff I1(A) � I2(A), for every ground atomA. We define(I1 ∧ I2)(A) = I1(A) ∧ I2(A)
and similarly for∨. With I⊥ we denote the bottom interpretation under� (it maps any
atom into⊥). It is easy to see that〈I(L),�〉 is a complete lattice as well.
Models. An interpretationI is amodelof a logic programP, denoted byI |= P, iff for
all A← ϕ ∈ P∗, I(ϕ) � I(A) holds.
Query. A query, denotedq, is an expression of the form?A (query atom), intended as a
question about the truth of the atomA in the minimal model ofP (see below). We also
allow a query to be aset{?A1, . . . , ?An} of query atoms. In that latter case we ask about
the truth of all the atomsAi in the minimal model ofP.
Semantics of logic programs.The semantics of a logic programP is determined by
the least model ofP, MP = min{I: I |= P}. Theexistence and uniquenessof MP is
guaranteed by the fixed-point characterization, by means of theimmediate consequence
operatorΦP . For an interpretationI, for any ground atomA, ΦP(I)(A) = I(ϕ), where
A ← ϕ ∈ P∗. We can show that the functionΦP is continuous overI(L), the set of
fixed-points ofΦP is a complete lattice under� and, thus,ΦP has a least fixed-point and
I is a model of a programP iff I is a fixed-point ofΦP . Therefore, the minimal model of
P coincides with the least fixed-point ofΦP , which can be computed in the usual way by
iteratingΦP overI⊥ and is attained after at mostω (the least limit ordinal) iterations.

Example 2 ConsiderL[0,1]Q , the functionf(x) = x+a
2 (0 < a ≤ 1, a ∈ Q), andP =

{A ← f(A)}. Then the minimal model is attained afterω steps ofΦP iterations starting
fromI⊥(A) = 0 and isMP(A) = a.

2 It is a standard practice in logic programming to consider such atoms asfalse.

Example 3 Consider Example 1. It turns out that by a bottom-up computation the minimal
mode isMP , where (for ease, we use first letters only)MP(R(j)) = 0.64, MP(S(j)) =
0.8, MP(Y(j)) = 0, MP(G(j)) = 0.32, MP(E(j)) = 0.7.

3 Top-down query answering

Given a logic programP, one way to answer to a query?A is to compute the minimal
modelMP of P by a bottom-up fixed-point computation and then answer withMP(A).
This always requires to compute a whole model, even if in order to determineMP(A),
not all the atom’s truth is required. Our goal is to present a general, simple, yet effective
top-down method, which relies on the computation of just a part of the minimal model.
Essentially, we will try to determine the value of a single atom by investigating only a part
of the programP. Our method is based on a transformation of a program into a system
of equations of monotonic functions over lattices for which we compute the least fixed-
point in a top-down style. The idea is the following. LetL = 〈L,�〉 be a lattice and
let P be a logic program. Consider the Herbrand baseBP = {A1, . . . , An} of P and
considerP∗. Let us associate to each atomAi ∈ BP a variablexi, which will take a
value in the domainL (sometimes, we will refer to that variable withxA as well). An
interpretationI may be seen as an assignment of lattice values to the variablesx1, ..., xn.
For the immediate consequence operatorΦP , a fixed-point is such thatI = ΦP(I), i.e. for
all atomsAi ∈ BP , I(Ai) = ΦP(I)(Ai). Therefore, we may identify the fixed-points of
ΦP as the solutions overL of the system of equations of the following form:

x1 = f1(x11 , . . . , x1a1
) ,

...
xn = fn(xn1 , . . . , xnan

) ,

(1)

where for1 ≤ i ≤ n, 1 ≤ k ≤ ai, we have1 ≤ ik ≤ n. Each variablexik
will take a

value in the domainL, each (continuous) functionfi determines the value ofxi (i.e. Ai)
given an assignmentI(Aik

) to each of theai variablesxik
. The functionfi implements

ΦP(I)(Ai). For instance, by considering the logic program in Example 1, the fixed-points
of theΦP operator are the solutions over a lattice of the system of equations

xE(j) = 0.7 , xS(j) = 0.8 , xY(j) = 0 , xG(j) = min{xE(j), 0.5 · xR(j)},
xR(j) = max{0.5, 0.8 · xY(j), 0.8 · xS(j), min{xE(j), 0.5 · xG(j)}} .

(2)

It is easily verified that the least solution corresponds to the minimal model ofP. There-
fore, our general approach for query answering is as follows: given a logic programP,
translate it into an equational system as (1) and then compute the answer in a top-down
manner. Formally, letP be a logic program and considerP∗. As already pointed out, each
atom appears exactly once in the head of a rule inP∗. The system of equations that we
build fromP∗ is straightforward. Assign to each atomA a variablexA and substitute in
P∗ each occurrence ofA with xA. Finally, substitute each occurrence of← with = and let
S(P) be the resulting equational system (see Equation 2). The answer of a query variable
?A w.r.t. a logic programP is computed by the algorithmSolve(P, ?A). It first computes
S(P) and then callsSolve(S(P), {xA}), which will solve the equational system answer-
ing with the value forxA. Therefore, query answering in logic programs reduces to query
answering in equational monotone systems of the form (1), which we address next. We
refer to the monotone system as in Equation (1) as the tupleS = 〈L, V, f〉, whereL is
a lattice,V = {x1, ..., xn} are the variables andf = 〈f1, ..., fn〉 is the tuple of func-
tions. As it is well known, a monotonic equation system as(1) has a least solution, lfp(f),

which can be computed by a bottom-up evaluation. Indeed, the least fixed-point off is
given as the least upper bound of the monotone sequence,y0, . . . ,yi, . . ., wherey0 = ⊥
andyi+1 = f(yi).

Our top-down procedure needs some auxiliary functions.s(x) denotes the set ofsons
of x, i.e.s(xi) = {xi1 , . . . , xiai

} (the set of variables appearing in the right hand side of
the definition ofxi). p(x) denotes the set ofparentsof x, i.e. the setp(x) = {xi:x ∈
s(xi)} (the set of variables depending on the value ofx). In the general case, we assume
that each functionfi:Lai 7→ L in Equation (1) is monotone. We also usefx in place of
fi, for x = xi. Informally our algorithm works as follows. Assume we are interested in
the value ofx0 in the least fixed-point of the system. We associate to each variablexi a
markingv(xi) denoting the current value ofxi (the mappingv contains the current value
associated to the variables). Initially,v(xi) is⊥. We start with puttingx0 in theactivelist
of variablesA, for which we evaluate whether the current value of the variable is identical
to whatever its right-hand side evaluates to. When evaluating a right-hand side it might of
course turn out that we do indeed need a better value of some sons, which will assumed to
have the value⊥ and put them on the list of active nodes to be examined. In doing so we
keep track of the dependencies between variables, and whenever it turns out that a variable
changes its value (actually, it can only increase) all variables that might depend on this
variable are put in the active set to be examined. At some point (even if cyclic definitions
are present) the active list will become empty and we have actually found part of the fixed-
point, sufficient to determine the value of the queryx0. The algorithm is given below.

ProcedureSolve(S, Q)
Input: monotonic systemS = 〈L, V, f〉, whereQ ⊆ V is the set of query variables;
Output: A setB ⊆ V , with Q ⊆ B such that the mappingv equals lfp(f) onB.

1. A: = Q, dg: = Q, in: = ∅, for all x ∈ V do v(x) = ⊥, exp(x) = 0

2. while A 6= ∅ do
3. selectxi ∈ A, A: = A \ {xi}, dg: = dg ∪ s(xi)
4. r: = fi(v(xi1), ..., v(xiai

))
5. if r � v(xi) then v(xi):= r, A: = A ∪ (p(xi) ∩ dg) fi
6. if not exp(xi) then exp(xi) = 1, A: = A ∪ (s(xi) \ in), in: = in ∪ s(xi) fi

od

The variabledg collects the variables that may influence the value of the query variables,
the array variableexp traces the equations that has been “expanded” (body variables are
put into the active list), whilein keeps track of the variables that have been put into the
active list so far due to an expansion (to avoid, to put the same variable multiple times in
the active list due to function body expansion). The attentive reader will notice that the
Solve procedure is related to the so-calledtabulationprocedures, like [2, 4]. Indeed, it is
a generalization of it to arbitrary monotone equational systems over lattices.

Example 4 Consider Example 1 and query variablexR(j) (we ask for the risk coefficient
of John). Below is a sequence ofSolve(S, {xR(j)}) computation. Each line is a sequence
of steps in the ‘while loop’. What is left unchanged is not reported.
1. A: = {xR(j)}, xi: = xR(j), A: = ∅, dg: = {xR(j), xY(j), xS(j), xE(j), xG(j)}, r: = 0.5, v(xR(j)):= 0.5,

A: = {xG(j)}, exp(xR(j)):= 1, A: = {xY(j), xS(j), xE(j), xG(j)}, in: = {xY(j), xS(j), xE(j), xG(j)}
2. xi: = xY(j), A: = {xS(j), xE(j), xG(j)}, r: = 0, exp(xY(j)):= 1

3. xi: = xS(j), A: = {xE(j), xG(j)}, r: = 0.8, v(xS(j)):= 0.8, A: = {xE(j), xG(j), xR(j)}, exp(xS(j)): = 1

4. xi: = xE(j), A: = {xG(j), xR(j)}, r: = 0.7, v(xE(j)):= 0.7, exp(xE(j)): = 1

5. xi: = xG(j), A: = {xR(j)}, r: = 0.25, v(xG(j)): = 0.25, exp(xG(j)):= 1,
in: = {xY(j), xS(j), xE(j), xG(j), xR(j)}

6. xi: = xR(j), A: = ∅, r: = 0.64, v(xR(j)):= 0.64, A: = {xG(j)}
7. xi: = xG(j), A: = ∅, r: = 0.32, v(xG(j)):= 0.32, A: = {xR(j)}
8. xi: = xG(j), A: = ∅, r: = 0.64
10. stop. return v(in particular, v(xR(j)) = 0.64)
The fact that only a part of the model is computed becomes evident, as the computation
does not change if we add any programP ′ toP not containing atoms ofP, while a bottom-
up computation will considerP ′ as well.

GivenS = 〈L, V, f〉, whereL = 〈L,�〉, let h(L) be theheightof the truth-value setL,
i.e. the length of the longest strictly increasing chain inL minus 1, where the length of a
chainv1, ..., vα, ... is the cardinal|{v1, ..., vα, ...}|. Thecardinal of a countable setX is
the least ordinalα such thatα andX areequipollent, i.e. there is a bijection fromα to
X. For instance,h(FOUR) = 2, while h(L[0,1]Q) = ω. It can be shown that the above
algorithms answer correctly.

Proposition 5 Given monotoneS = 〈L, V, f〉, then there is a limit ordinalλ such that
after |λ| stepsSolve(S, Q) determines a setB ⊆ V , with Q ⊆ B such that the mapping
v equals lfp(f) on B, i.e. v|B = lfp(f)|B . As a consequence, letP and ?A be a logic
program and a query, respectively. ThenMP(A) = Solve(P, {?A}) 3.

From a computational point of view, by means of appropriate data structures, the opera-
tions onA, v, dg, in, exp, p ands can be performed in constant time. Therefore, Step1. is
O(|V |), all other steps, except Step2. and Step4. areO(1). Let c(fx) be the maximal cost
of evaluating functionfx on its arguments, so Step4. is O(c(fx)). It remains to determine
the number of loops of Step2. In case the heighth(L) of the latticeL is finite, observe
that any variable is increasing in the� order as it enters in theA list (Step5.), except it
enters due to Step6., which may happen one time only. Therefore, each variablexi will
appear inA at mostai · h(L) + 1 times, whereai is the arity offi, as a variable is only
re-entered intoA if one of its son gets an increased value (which for each son only can hap-
penh(L) times), plus the additional entry due to Step6. As a consequence, the worst-case
complexity isO(

∑
xi∈V (c(fi) · (ai · h(L) + 1)). Therefore:

Proposition 6 Given monotoneS = 〈L, V, f〉, where the computing cost of each function
in f is bounded byc, the arity bounded bya, and the height is bounded byh, then the
worst-case complexity of the algorithmSolve is O(|V |cah).

In case the height of a lattice is not finite, the computation may not terminate after a
finite number of steps (see Example 2). Fortunately, under reasonable assumptions on the
functions, we may guarantee the termination ofSolve (see [12]). For instance, a condition
that guarantees the termination ofSolve is inspired directly by [3]. On lattices, we say that
a functionf :Ln → L is boundediff f(x1, . . . , xn) � ∧ixi. Now, consider a monotone
system of equationsS = 〈L, V, f〉. We say thatf is boundediff eachfi is a composition
of functions, each of which is either bounded, or a constant inL or one of∨ and∧. For
instance, the function in Example 2 is not bounded, whilef(x, y) = max(0, x+y−1)∧0.3
overL[0,1]Q is. It can be shown that

Proposition 7 Given monotoneS = 〈L, V, f〉 with f bounded, thenSolve terminates.

Concerning the special case were the equational system is directly obtained from the trans-
lation of a logic program, we can avoid the cost of translatingP into S(P) as we can

3 The extension to a set of query atoms is straightforward.

directly operate onP. So the costO(|P|) can be avoided. In case the height of the lattice
is finite, from Proposition 6 it follows immediately that the worst-case complexity for top-
down query answering isO(|BP |cah). Furthermore, often the cost of computing each of
the functions offP is in O(1). By observing that|BP |a is in O(|P|) we immediately have
that in this case the complexity isO(|P|h). It follows that over the latticeFOUR (h = 2)
the top-down algorithm works inlinear time. Moreover, if the height is a fixed parameter,
i.e. a constant, we can conclude that the additional expressive power of logic programs over
lattices (with functions with constant cost) does not increase the computational complexity
of classical propositional logic programs, which islinear The computational complexity
of the case where the height of the lattice is not finite is determined by Proposition 7. In
general, the continuity of the functions inS(P) guarantees the termination after at mostω
steps.

4 Conclusions

We have presented a simple, general, yet effective top-down algorithm to answer queries
for logic programs over lattices with arbitrary continues functions in the body to manip-
ulate uncertainty values. We believe that its interest relies on its easiness for an effective
implementation and the fact that many approaches to uncertainty management in logic
programming are based on lattices, respectively.

References

1. N. D. Belnap. A useful four-valued logic. In G. Epstein and J. Michael Dunn, editors,Modern
uses of multiple-valued logic, pages 5–37. Reidel, Dordrecht, NL, 1977.

2. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.Journal
of the ACM, 43(1):20–74, 1996.

3. C. Viegas Daḿasio, J. Medina, and M. Ojeda Aciego. Sorted multi-adjoint logic programs:
Termination results and applications. In LNCS 3229, pages 252–265. Springer Verlag, 2004.

4. C. Viegas Daḿasio, J. Medina, and M. Ojeda Aciego. A tabulation proof procedure for residu-
ated logic programming. InProc. of European Conf. on Artificial Intelligence (ECAI-04), 2004.

5. D. Dubois, J. Lang, and H. Prade. Towards possibilistic logic programming. InProc. of the 8th
Int. Conf. on Logic Programming (ICLP-91), pages 581–595. The MIT Press, 1991.

6. M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logic programming and its
applications.Journal of Logic Programming, 12:335–367, 1992.

7. L. V.S. Lakshmanan and N. Shiri. A parametric approach to deductive databases with uncer-
tainty. IEEE Transactions on Knowledge and Data Engineering, 13(4):554–570, 2001.

8. J. W. Lloyd.Foundations of Logic Programming. Springer, Heidelberg, RG, 1987.
9. Y. Loyer and U. Straccia. The approximate well-founded semantics for logic programs with

uncertainty. In LNCS 2747, pages 541–550, 2003. Springer-Verlag.
10. T. Lukasiewicz. Probabilistic logic programming. InProc. of the 13th European Conf. on

Artificial Intelligence (ECAI-98), pages 388–392, 1998.
11. R. Ng and V.S. Subrahmanian. Probabilistic logic programming.Information and Computation,

101(2):150–201, 1993.
12. U. Straccia. Top-down query answering for logic programs over bilattices. Technical Report

2004-TR-62, Istituto di Scienza e Tecnologie dell’Informazione, CNR, Pisa, Italy, 2004.
13. P. Vojt́ǎs. Fuzzy logic programming.Fuzzy Sets and Systems, 124:361–370, 2004.

