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Introduction

I In the last years the interest in ontologies has significantly
grown

I An ontology is defined as an explicit and formal
specification of a shared conceptualization

I Description Logics (DLs) are a family of logics that are the
logical foundation of the standard W3C ontology language
OWL [HPS04].



I It is widely agreed that “classical” ontology languages are
not appropriate to deal with fuzzy/vague knowledge

I Fuzzy ontologies emerge as useful in several applications,
such as multimedia information retrieval, image
interpretation, ontology mapping, matchmaking and the
Semantic Web [LS08]

I Several fuzzy extensions of DLs can be found in the
literature (see the survey in [LS08])

I Some fuzzy DL reasoners have been implemented, such
as FUZZYDL [BS08], DELOREAN [BDGR08] or
FIRE [SSSK06].



I In this work, we make a first step in combining
Multi-Criteria Decision Making (MCDM) and fuzzy DLs

I ⇒ fuzzy knowledge assisted approach to decision making



Preliminaries: Mathematical Fuzzy Logic [Háj98]

I Fuzzy statements: 〈φ,n〉, where n∈ [0,1] and φ is a statement

I The degree of truth of φ is at least n

I Fuzzy interpretation: I : Atoms → [0,1] and is then extended
inductively:

I(φ ∧ ψ) = I(φ)⊗ I(ψ) I(φ ∨ ψ) = I(φ)⊕ I(ψ),
I(φ→ ψ) = I(φ)⇒ I(ψ) I(¬φ) = 	I(φ) ,
I(∃x .φ(x)) = supc∈∆I I(φ(c)) I(∀x .φ(x)) = infc∈∆I I(φ(c))

⊗, ⊕,⇒, and 	 are truth combination functions

Łukasiewicz Logic Gödel Logic Product Logic “Zadeh Logic”
a⊗ b max(a + b − 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a + b, 1) max(a, b) a + b − a · b max(a, b)

a⇒ b min(1− a + b, 1)

(
1 if a 6 b
b otherwise

min(1, b/a) max(1− a, b)

	 a 1− a

(
1 if a = 0
0 otherwise

(
1 if a = 0
0 otherwise

1− a



I I |= 〈φ,n〉 iff I(φ) > n

I Best Entailment Degree (BED): bed(K, φ) = sup {r | K |= 〈φ, r〉}
I BED can be computed as (where φ 6 x is 〈¬φ,1− x〉)

bed(K, φ) = min x . such that K ∪ {φ 6 x} satisfiable

I E.g., for Łukasiewicz logic, we may use Mixed Integer Linear
Programming

bed(K, φ) = min x . such that
x ∈ [0, 1], x¬φ > 1− x , σ(¬φ),
for all 〈φ′, n〉 ∈ K, xφ′ > n, σ(φ′),

σ(φ) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

xp ∈ [0, 1] if φ = p

xφ′ = 	xφ, xφ ∈ [0, 1] if φ = ¬φ′

xφ1 ⊗ xφ2 = xφ,
σ(φ1), σ(φ2), xφ ∈ [0, 1]

if φ = φ1 ∧ φ2

xφ1 ⊕ xφ2 = xφ if φ = φ1 ∨ φ2

σ(¬φ1 ∨ φ2) if φ = φ1 → φ2 .



Preliminaries: MCDM Basics

I Alternatives Ai : different choices of action available to the decision
maker to be ranked

I Decision criteria Cj : different dimensions from which the alternatives
can be viewed and evaluated

I Decision weights wj : importance of a criteria
I Performance weights aij : performance of alternative w.r.t. a decision

criteria
Criteria

w1 w2 · · wm
Alternatives C1 C2 · · Cm

x1 A1 a11 a12 · · a1m
x2 A2 a21 a22 · · a2m
· · · · · · ·
· · · · · · ·

xn An an1 an2 · · anm

(1)

I Final ranking value xi :

xi =
mX

j=1

aijwj

I Optimal alternative A∗:
A∗ = arg max

Ai
xi



Preliminaries: Fuzzy MCDM Basics
I Principal difference: weights wi and performance aij are fuzzy numbers
I Fuzzy number ñ: fuzzy set over relas with triangular membership

function tri(a, b, c). Intended being an approximation of the number b

cba
0

1

x

I Any real value n is seen as the fuzzy number tri(n, n, n)

I Arithmetic operators +,−, · and ÷ are extended to fuzzy numbers
I For ∗ ∈ {+, ·}, ñ1 ∗ ñ2 = tri(a1 ∗ a2,b1 ∗ b2, c1 ∗ c2)
I For ∗ ∈ {−,÷}, ñ1 ∗ ñ2 = tri(a1 ∗ c2,b1 ∗ b2, c1 ∗ a2)

I Final ranking value xi : fuzzy number

x̃i =
mX

j=1

ãij · w̃j

I Optimal alternative A∗:

A∗ = arg max
Ai

xdefuzzy
i

using some defuzzification method for fuzzy numbers



Towards MCDM in Fuzzy Description Logic

I Our extension of to fuzzy DLs is grounded on the fuzzy DL
ALCF(D) [Str05]

I We will just provide a minimal variant of ALCF(D) to deal
with MCDM

I Recall that fuzzy ALCF(D) is the basic DL ALC extended
with functional roles (letter F) and concrete
domains [LM07] (letter D) allowing to deal with data types
such as strings, integers, reals and fuzzy membership
functions



Description Logics (DLs)

I The logics behind OWL-DL and OWL-Lite,
http://dl.kr.org/.

I Concept/Class: names are equivalent to unary predicates
I In general, concepts equiv to formulae with one free

variable
I Role or attribute: names are equivalent to binary

predicates
I In general, roles equiv to formulae with two free variables

I Taxonomy: Concept and role hierarchies can be expressed
I Individual: names are equivalent to constants
I Operators: restricted so that:

I Language is decidable and, if possible, of low complexity
I No need for explicit use of variables

I Restricted form of ∃ and ∀
I Features such as counting can be succinctly expressed

http://dl.kr.org/


The Crisp DL Family

I A given DL is defined by set of concept and role forming operators
I Basic language: ALC(Attributive Language with Complement)

Syntax Semantics Example
C,D → > | >(x)

⊥ | ⊥(x)
A | A(x) Human

C u D | C(x) ∧ D(x) Human u Male
C t D | C(x) ∨ D(x) Nice t Rich
¬C | ¬C(x) ¬Meat
∃R.C | ∃y.R(x, y) ∧ C(y) ∃has_child.Blond
∀R.C ∀y.R(x, y)→ C(y) ∀has_child.Human

C v D ∀x.C(x)→ D(x) Happy_Father v Man u ∃has_child.Female
a :C C(a) John :Happy_Father



Example: GIS Quality Assessment Ontology [OWML08]



Note on DL Naming
AL: C,D −→ > | ⊥ |A |C u D | ¬A | ∃R.> |∀R.C
C: Concept negation, ¬C. Thus, ALC = AL+ C
S: Used for ALC with transitive roles R+

U : Concept disjunction, C1 t C2
E : Existential quantification, ∃R.C
H: Role inclusion axioms, R1 v R2, e.g.,

is_component_of v is_part_of
N : Number restrictions, (> n R) and (6 n R), e.g., (> 3 has_Child)

(has at least 3 children)
Q: Qualified number restrictions, (> n R.C) and (6 n R.C), e.g.,

(6 2 has_Child .Adult) (has at most 2 adult children)
O: Nominals (singleton class), {a}, e.g., ∃has_child .{mary}.

Note: a :C equiv to {a} v C and (a, b) :R equiv to {a} v ∃R.{b}
I: Inverse role, R−, e.g., isPartOf = hasPart−

F : Functional role, f , e.g., functional(hasAge)

R+: transitive role, e.g., transitive(isPartOf )

R: role inclusions with composition, R1 ◦ R2 v S, e.g.,
isPartOf ◦ isPartOf v isPartOf

For instance,

SHIF = S +H+ I + F = ALCR+HIF OWL-Lite
SHOIN = S +H+O + I +N = ALCR+HOIN OWL-DL
SROIQ = S +R+O + I +Q = ALCR+ROIN OWL 2



Fuzzy DLs Basics

The semantics is an immediate consequence of applying mathematical fuzzy logic to the First-Order-Logic
translation of DLs expressions

Interpretation:
I = ∆I

CI : ∆I → [0, 1]

RI : ∆I × ∆I → [0, 1]

⊗ = t-norm
⊕ = s-norm
	 = negation
⇒ = implication

Concepts:

Syntax Semantics
C,D −→ > | >I (x) = 1

⊥ | ⊥I (x) = 0
A | AI (x) ∈ [0, 1]

C u D | (C1 u C2)I (x) = C1
I (x)⊗ C2

I (x)

C t D | (C1 t C2)I (x) = C1
I (x)⊕ C2

I (x)

¬C | (¬C)I (x) = 	CI (x)

∃R.C | (∃R.C)I (x) = supy∈∆I RI (x, y)⊗ CI (y)

∀R.C (∀R.C)I (u) = infy∈∆I RI (x, y)⇒ CI (y)}

Assertions: 〈a :C, n〉, I |= 〈a :C, n〉 iff CI (aI ) > n (similarly for roles)
I individual a is instance of concept C at least to degree n, n ∈ [0, 1] ∩ Q

Inclusion axioms: 〈C v D, n〉,
I I |= 〈C v D, n〉 iff infx∈∆I CI (x)⇒ DI (x) > n



Fuzzy DL: Specific Constructs
I Concrete data types

I e.g., Sedan u (> price 22.000)

I Fuzzy constraints
I numerical features may be constrained by so-called fuzzy

membership functions

dcba
0

1

x cba
0

1

x ba
0

1

x ba
0

1

x

(a) (b) (c) (d)

Figure: (a) Trapezoidal function trz(a, b, c, d), (b) triangular
function tri(a, b, c), (c) left shoulder function ls(a, b), and (d) right
shoulder function rs(a, b).

I For instance, item4’s price is about 24000

item4 :∃price.tri(22000,24000,26000)



Definition (Specific Concept Expressions)

C → ∀t.d | ∃t.d (fuzzy constraints)
d → ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d)

e.g.
Car u ∃price.tri(22000, 24000, 26000)

C → DR (datatype restriction)
DR → (> t val) | (6 t val) | (= t val)

val → string | rational | FN | AE

FN → rational | fuzzynumber | FN1 ? FN2 ? ∈ {+,−, ·,÷}

AE → rational | t | n · t | AE1 + AE2

e.g.
audi234 :Sedan u (6 price 26000)

SoldItem v (= totalPrice netprice + VAT )
SoldItem v (= VAT 0.2 · netprice)

C → WC (weighted sum concept)
WC → (w1 · C1 + w2 · C2 + . . . + wk · Ck )

e.g.,
NiceHotel .= 0.3 · CheapHotel + 0.7 · ConfortableHotel

C → mod(C) (modified concept)

where mod is a linear hedge. E.g.,

SportCar v Car u ∃hasSpeed.very(High)



Example
I Assume that we have to chose among three offers for a GIS system that have been evaluated according to

I Criteria: Cost, Delivery Time and Quality
I Assume the decision matrix and the definition of the vague performance values are

Offer Cost DeliveryTime Quality
0.258 0.105 0.637

a1 VeryPoor Fair Good
a2 Good VeryGood Poor
a3 Fair Fair Poor

I Fuzzy DL encoding:

VeryPoor .= ls(0, 2), Poor .= tri(1, 2.5, 4), Fair .= tri(3, 5, 7), Good .
= tri(6, 7.5, 9), VeryGood .

= rs(8, 10)

a1 :Alternative u ∃hasCost.VeryPoor u ∃hasDeliveryTime.Fair u ∃hasQuality.Good
a2 :Alternative u ∃hasCost.Good u ∃hasDeliveryTime.VeryGood u ∃hasQuality.Poor
a3 :Alternative u ∃hasCost.Fair u ∃hasDeliveryTime.Fair u ∃hasQuality.Poor

Alternative .
= (= hasRankValue 0.258 · hasCost + 0.105 · hasDeliveryTime + 0.637 · hasQuality)

I Final Rank Value: rank(K, ai) = mom(K, Alternative, ai, hasRankValue)

rank(K, a1) = 5.301

rank(K, a2) = 4.577

rank(K, a3) = 3.408

a∗ = arg max
ai

rank(K, ai) = a1



I Encoding nicely extends if background knowledge is
involved such as, e.g.,

I Criteria taxonomy

Consistency v DataQualityElement

I Properties of alternatives, e.g.,

a1 :Alternative u ∃hasSecurity.VeryPoor



Conclusions & Outlook

I We have made a first attempt towards MCDM within fuzzy
DLs, i.e.,

I Towards a (fuzzy) knowledge-assisted approach to decision
making

I FUZZYDL reasoner supports the encoding proposed here
I The MCDM literature (inclusive their fuzzy MCDM variants)

is quite large
I It will be of interest to look at

I how to integrate and support different MCDM methods
I a methodology to smoothly integrate background

knowledge into MCDM
I whether (fuzzy) knowldege/ontology-based MCDM is an

added-value in real-world applications
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