Multi Criteria Decision Making in Fuzzy Description Logics: A First Step

Umberto Straccia

ISTI-CNR, Pisa, Italy

straccia@isti.cnr.it

www.straccia.info

(日) (日) (日) (日) (日) (日) (日)

Introduction

- In the last years the interest in ontologies has significantly grown
- An ontology is defined as an explicit and formal specification of a shared conceptualization
- Description Logics (DLs) are a family of logics that are the logical foundation of the standard W3C ontology language OWL [HPS04].

- It is widely agreed that "classical" ontology languages are not appropriate to deal with fuzzy/vague knowledge
- Fuzzy ontologies emerge as useful in several applications, such as multimedia information retrieval, image interpretation, ontology mapping, matchmaking and the Semantic Web [LS08]
- Several fuzzy extensions of DLs can be found in the literature (see the survey in [LS08])
- Some fuzzy DL reasoners have been implemented, such as FUZZYDL [BS08], DELOREAN [BDGR08] or FIRE [SSSK06].

- In this work, we make a first step in combining Multi-Criteria Decision Making (MCDM) and fuzzy DLs
 - ightarrow ightarrow fuzzy knowledge assisted approach to decision making

Preliminaries: Mathematical Fuzzy Logic [Háj98]

- Fuzzy statements: $\langle \phi, n \rangle$, where $n \in [0, 1]$ and ϕ is a statement
 - The degree of truth of ϕ is at least n
- Fuzzy interpretation: I : Atoms → [0, 1] and is then extended inductively:

$$\begin{split} \mathcal{I}(\phi \wedge \psi) &= \mathcal{I}(\phi) \otimes \mathcal{I}(\psi) & \mathcal{I}(\phi \vee \psi) = \mathcal{I}(\phi) \oplus \mathcal{I}(\psi), \\ \mathcal{I}(\phi \to \psi) &= \mathcal{I}(\phi) \Rightarrow \mathcal{I}(\psi) & \mathcal{I}(\neg \phi) = \ominus \mathcal{I}(\phi), \\ \mathcal{I}(\exists x.\phi(x)) &= \sup_{c \in \Delta^{\mathcal{I}}} \mathcal{I}(\phi(c)) & \mathcal{I}(\forall x.\phi(x)) = \inf_{c \in \Delta^{\mathcal{I}}} \mathcal{I}(\phi(c)) \end{split}$$

 $\otimes, \oplus, \Rightarrow$, and \ominus are truth combination functions

	Łukasiewicz Logic	Gödel Logic	Product Logic	"Zadeh Logic"
a⊗b	max(a + b - 1, 0)	min(<i>a</i> , <i>b</i>)	a · b	min(<i>a</i> , <i>b</i>)
$a \oplus b$	min(<i>a</i> + <i>b</i> , 1)	_ max(<i>a</i> , <i>b</i>)	$a + b - a \cdot b$	max(<i>a</i> , <i>b</i>)
$a \Rightarrow b$	$\min(1-a+b,1)$	$\begin{cases} 1 & \text{if } a \leqslant b \\ b & \text{otherwise} \end{cases}$	min(1, <i>b/a</i>)	max(1 - a, b)
⊖ a	1 – <i>a</i>	$\begin{cases} 1 & \text{if } a = 0 \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 1 & \text{if } a = 0 \\ 0 & \text{otherwise} \end{cases}$	1 – <i>a</i>

- $\blacktriangleright \mathcal{I} \models \langle \phi, n \rangle \text{ iff } \mathcal{I}(\phi) \ge n$
- Best Entailment Degree (BED): $bed(\mathcal{K}, \phi) = \sup \{r \mid \mathcal{K} \models \langle \phi, r \rangle \}$
- ▶ BED can be computed as (where $\phi \leq x$ is $\langle \neg \phi, 1 x \rangle$)

 $bed(\mathcal{K}, \phi) = \min x$. such that $\mathcal{K} \cup \{\phi \leq x\}$ satisfiable

E.g., for Łukasiewicz logic, we may use Mixed Integer Linear Programming

$$bed(\mathcal{K}, \phi) = \min x. \text{ such that}$$

$$x \in [0, 1], x_{\neg \phi} \ge 1 - x, \sigma(\neg \phi),$$
for all $\langle \phi', n \rangle \in \mathcal{K}, x_{\phi'} \ge n, \sigma(\phi'),$

$$\sigma(\phi) = \begin{cases}
x_{p} \in [0, 1] & \text{if } \phi = p \\
x_{\phi'} = \ominus x_{\phi}, x_{\phi} \in [0, 1] & \text{if } \phi = \neg \phi' \\
x_{\phi_1} \otimes x_{\phi_2} = x_{\phi}, \\
\sigma(\phi_1), \sigma(\phi_2), x_{\phi} \in [0, 1] & \text{if } \phi = \phi_1 \land \phi_2 \\
x_{\phi_1} \oplus x_{\phi_2} = x_{\phi} & \text{if } \phi = \phi_1 \lor \phi_2 \\
\sigma(\neg \phi_1 \lor \phi_2) & \text{if } \phi = \phi_1 \to \phi_2.
\end{cases}$$

Preliminaries: MCDM Basics

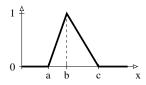
- Alternatives A_i: different choices of action available to the decision maker to be ranked
- Decision criteria C_j: different dimensions from which the alternatives can be viewed and evaluated
- Decision weights w_j: importance of a criteria
- Performance weights a_{ij}: performance of alternative w.r.t. a decision criteria

			Criteria					
		w ₁	W2	•	•	wm		
Alternatives		<i>C</i> ₁	C ₂	•	•	Cm		
<i>x</i> ₁	A ₁	a ₁₁	a ₁₂	•	•	a _{1m}		
<i>x</i> ₂	A2	a ₂₁	a ₂₂	•	•	a _{2m}		
·	•	•	•	•	•	•		
•	· ·	•	•	•	•	•		
хn	An	a _{n1}	a _{n2}	•		anm		

(1)

(日) (日) (日) (日) (日) (日) (日)

Final ranking value x_i:


$$x_i = \sum_{j=1}^m a_{ij} w_j$$

Optimal alternative A*:

$$A^* = \arg \max_{A_i} x_i$$

Preliminaries: Fuzzy MCDM Basics

- Principal difference: weights w_i and performance a_{ij} are fuzzy numbers
- Fuzzy number ñ: fuzzy set over relas with triangular membership function *tri*(*a*, *b*, *c*). Intended being an approximation of the number *b*

- Any real value *n* is seen as the fuzzy number tri(n, n, n)
- ► Arithmetic operators +, -, · and ÷ are extended to fuzzy numbers
 - For $* \in \{+, \cdot\}$, $\tilde{n}_1 * \tilde{n}_2 = tri(a_1 * a_2, b_1 * b_2, c_1 * c_2)$
 - For $* \in \{-, \div\}$, $\tilde{n}_1 * \tilde{n}_2 = tri(a_1 * c_2, b_1 * b_2, c_1 * a_2)$

Final ranking value x_i: fuzzy number

$$ilde{x}_i = \sum_{j=1}^m ilde{a}_{ij} \cdot ilde{w}_j$$

Optimal alternative A*:

$$A^* = \arg \max_{A_i} x_i^{defuzzy}$$

using some defuzzification method for fuzzy numbers and the second second

Towards MCDM in Fuzzy Description Logic

- Our extension of to fuzzy DLs is grounded on the fuzzy DL ALCF(D) [Str05]
- We will just provide a minimal variant of ALCF(D) to deal with MCDM
- Recall that fuzzy ALCF(D) is the basic DL ALC extended with functional roles (letter F) and concrete domains [LM07] (letter D) allowing to deal with data types such as strings, integers, reals and fuzzy membership functions

Description Logics (DLs)

- The logics behind OWL-DL and OWL-Lite, http://dl.kr.org/.
- Concept/Class: names are equivalent to unary predicates
 - In general, concepts equiv to formulae with one free variable
- Role or attribute: names are equivalent to binary predicates
 - In general, roles equiv to formulae with two free variables
- Taxonomy: Concept and role hierarchies can be expressed
- Individual: names are equivalent to constants
- Operators: restricted so that:
 - Language is decidable and, if possible, of low complexity
 - No need for explicit use of variables
 - ▶ Restricted form of \exists and \forall
 - Features such as counting can be succinctly expressed

The Crisp DL Family

- A given DL is defined by set of concept and role forming operators
- Basic language: ALC(Attributive Language with Complement)

Syntax	Semantics	Example
$C, D \rightarrow \top$	$ \top(x)$	
1	$\perp (x)$	
A	A(x)	Human
$C \sqcap D$	$C(x) \wedge D(x)$	Human ⊓ Male
$C \sqcup D$	$C(x) \vee D(x)$	Nice 🗆 Rich
$\neg C$	$ \neg C(x)$	¬Meat
∃ <i>R</i> . <i>C</i>	$\exists y.R(x,y) \wedge C(y)$	∃has_child.Blond
∀ <i>R</i> . <i>C</i>	$\forall y.R(x,y) \rightarrow C(y)$	∀has_child.Human
$C \sqsubseteq D$	$\forall x. C(x) \to D(x)$	Happy_Father \sqsubseteq Man $\sqcap \exists$ has_child.Female
a:C	<i>C</i> (<i>a</i>)	John:Happy_Father

Example: GIS Quality Assessment Ontology [OWML08]

Sogontology.owl (http://www.owl-ontologies.com/osqontology.owl)							₿8 (88 (Q	
	Active Ontology	Entities	Classes	Object Properties	Data Properties	Individuals	OWLViz	DL Query	SoftFacts Tab
Asserted class hiera	archy Inferred class hierar	rchy				Class Annotatio	ns Class U	Jsage	
rted class hierar	rchy: QualityDimensior	0882	Annotat	ions: QualityDimens	ion				
🔹 l 🕱			Annotatio	205 🔿					
Thing			comme						
GFlowContro				uality is a Quantifiable	aspect of quality. A D	imension has a l	Domain and	may have a	Direction or Unit of
	singOperation			irement."@en					
	singOperation								
Direction									
OualityAttri	ihute								
 QualityAttri QualityD 	Dimension								
OoSD	Dimension								
	vailability								
Co	onformanceToStanda	ırds							
● Ca ● Ca	onformanceToStanda ost	ırds							
 Co Co Pe 	onformanceToStanda ost erformance	ırds							
 Co Co Pe Re 	onformanceToStanda ost erformance eliability	ırds							
Ca Ca Pe Re Re	onformanceToStanda ost erformance eliability eputation	urds							
Ca Ca Pe Re Re Se	onformanceToStanda ost erformance eliability eputation ecurity	ırds	Descriptio	on: QualityDimension	n				
Ca Ca Pe Re Re Se Vo	onformanceToStanda ost erformance eliability eputation ecurity olumeOfData	ırds	Descriptio		n				
● Ca ● Ca ● Pe ● Re ● Se ● Se ● Vo ▼ ● DataC	onformanceToStanda ost erformance eliability eputation ecurity olumeOfData QualityElement	ırds	Equivalent o	:lasses 🕒					
Ca ●Ca ●Pe ● Re ● Re ● Se ● Vo ● DataCa ● Ca	onformanceToStanda ost erformance eliability eputation ecurity olumeOfData QualityElement ompleteness onsistency	ırds	Equivalent o		n				
Ca ●Ca ●Pe • Re • Se • Vo ▼ ● DataC • Ca • Ca • Po	onformanceToStanda ost erformance eliability eputation ecurity olumeOfData QualityElement ompleteness onsistency ossitionalAccuracy	ırds	Equivalent of hasDo and ha and ha	asses 💿 main some Domair asDirection only Dir asDomain only Don	n rection nain				
Ca Ca Pe Re Se Vo Vo ♥ DataC Ca Ca Po Po P Re	onformanceToStanda ost erformance eliability eputation ecurity olumeOfData QualityElement ompleteness onsistency ositionalAccuracy eputation	ırds	Equivalent of hasDo and ha and ha	main some Domair asDirection only Dir	n rection nain	ement			
Ca Ca Pe Re Se Vo ♥ Data Ca Ca Ca Po Po Po F	onformanceToStanda ost erformance eliability ecurity olumeOData QualityElement ompleteness omsistency osistionalAccuracy eputation emporalAccuracy	ırds	Equivalent of hasDo and ha and ha	asses 💿 main some Domair asDirection only Dir asDomain only Don	n rection nain	ement			
Co Co Pe Re Re Se Vo ♥ Data(Co Co Po Po P Re Th	onformanceToStanda ost erformance eliability eputation ecurity QualityElement ompleteness onsistency ositionalAccuracy eputation emporalAccuracy	ırds	Equivalent of hasDo and ha and ha	main some Domain asDirection only Din asDomain only Don asUnitOfMeasure on	n rection nain	ement			
Ca Ca Pe Re Se Se VO Data(Ca Ca Po Po Pata(FTe Te Te Relati	onformanceToStanda ost erformance eliability eputation cucrity JulimeofData JulimeofData QualityElement ompleteness onsistency ossitionalAccuracy emporalAccuracy nemporalAccuracy nematicAccuracy	ırds	Equivalent of hasDo and ha and ha and ha Superclasse	main some Domain asDirection only Din asDomain only Don asUnitOfMeasure on s 💿	n rection nain	ement			
CCC CCC Pe Re Re Se Se CCC CCC CCC CCC CCC CCC CCC CCC	onformanceToStanda ost erformance eliability eputation ecurity UsumeOfData QualityElement ompleteness onsistency ossitionalAccuracy eputation emporalAccuracy ematicAccuracy etedQualityDimension isure	ırds	Equivalent of hasDo and ha and ha and ha Superclasse	main some Domain asDirection only Din asDomain only Don asUnitOfMeasure on	n rection nain	ement			
CC CC CC CC Pe Re Se Se V V Data(CC CC CC CC CC CC CC CC CC CC CC CC CC	onformance ToStanda ost erformance eliability eputation ccurity UnimeofData QualityElement ompleteness onsistency osistionalAccuracy eputation emporalAccuracy nematicAccuracy nematicAccuracy nematicAccuracy net eddQualityDimension usure	rrds	Equivalent of hasDo and ha and ha and ha Superclasse Qualit	Jasses main some Domain asDirection only Din asDomain only Don asUnitOfMeasure of s yAttribute	n rection nain	ement			
CCC CCC Pe Re E E E E E E CCC Po F F E E E E CCC CCC CCC Po F F Re I E CCC S E E E E E E E E E E E E E E E E	onformance ToStanda ost erformance eliability eputation curity olumeOfData OlumeOfData OlugalityElement ompleteness omsistency ositionalAccuracy eputation emporalAccuracy mematicAccuracy nematicAccuracy ededQualityDimension isure ttQualityMeasure deasure		Equivalent of hasDo and ha and ha and ha Superclasse Qualit	main some Domain asDirection only Din asDomain only Don asUnitOfMeasure on s	n rection nain	ement			
CC CC CC Pe Re Re Se CC VV V Data CC CC PO PO P Relat Relat V Constan QualityMea V Constan QCSM CC CC CC CC CC CC CC VV V V V V V V V	onformance ToStanda ost erformance eliability eputation curity olumeOfData QualityElement ompleteness onsistency ossitionalAccuracy eputation emporalAccuracy nematicAccuracy nematicAccuracy nematicAccuracy net qualityDimension isure putationalModelQual		Equivalent of hasDo and ha and ha and ha Superclasse Qualit Inherited ar	Hasses main some Domain asDirection only Din asDomain only Don asUnitOfMeasure on s yAttribute	n rection nain	ement			
CCC CCC Pe Re Se Se Se Se CCC Po Po Re Relat Constan QualityMea Constan QualityMea Data	onformance ToStanda ost erformance eliability eputation curity olumeOfData OlumeOfData OlugalityElement ompleteness omsistency ositionalAccuracy eputation emporalAccuracy mematicAccuracy nematicAccuracy ededQualityDimension isure ttQualityMeasure deasure		Equivalent of hasDo and ha and ha and ha Superclasse Qualit	Hasses main some Domain asDirection only Din asDomain only Don asUnitOfMeasure on s yAttribute	n rection nain	ement			
CCC CCC PP Re Re Se OV V Data CCC PO P Relat V QualityMea V Constan QoSM CComp CCC PD CCCC PD CCCC CCC PD CCCC PD CCCCCCCC	onformanceToStanda ost erformance eliability eputation curity olumeOfData oualityElement ompleteness omsistency ositionalAccuracy eputation emporalAccuracy edQualityDimension isure utQualityMeasure deasure putationalModelQual QualityMeasure		Equivalent of hasDo and ha and ha and ha Superclasse Qualit Inherited ar	asses main some Domain asDirection only Din asUnitOfMeasure or somation yAttribute	n rection nain	ement			

Note on DL Naming

- $\mathcal{AL}: \quad C, D \quad \longrightarrow \quad \top \mid \perp \mid A \mid C \sqcap D \mid \neg A \mid \exists R. \top \mid \forall R. C$
 - C: Concept negation, $\neg C$. Thus, $\mathcal{ALC} = \mathcal{AL} + C$
 - S: Used for ALC with transitive roles R_+
 - \mathcal{U} : Concept disjunction, $C_1 \sqcup C_2$
 - \mathcal{E} : Existential quantification, $\exists R.C$
 - \mathcal{H} : Role inclusion axioms, $R_1 \sqsubset R_2$, e.g., is component of \Box is part of
 - \mathcal{N} : Number restrictions, ($\geq n R$) and ($\leq n R$), e.g., ($\geq 3 has_Child$) (has at least 3 children)
 - Q: Qualified number restrictions, ($\ge n R.C$) and ($\le n R.C$), e.g., $(\leq 2 has Child.Adult)$ (has at most 2 adult children)
 - \mathcal{O} : Nominals (singleton class), {*a*}, *e.g.*, \exists has child.{mary}. **Note**: *a*: *C* equiv to $\{a\} \sqsubseteq C$ and (a, b): *R* equiv to $\{a\} \sqsubseteq \exists R.\{b\}$
 - \mathcal{I} : Inverse role, R^- , e.g., isPartOf = hasPart⁻
 - \mathcal{F} : Functional role, f, e.g., functional(hasAge)
- \mathcal{R}_+ : transitive role, e.g., transitive(isPartOf)
 - \mathcal{R} : role inclusions with composition, $R_1 \circ R_2 \sqsubseteq S$, *e.g.*, *isPartOf* ∘ *isPartOf* ⊂ *isPartOf*

For instance,

 $SHIF = S + H + I + F = ALCR_+HIF$ **OWL-Lite** $SHOIN = S + H + O + I + N = ALCR_+HOIN$ OWL-DL $SROIQ = S + R + O + I + Q = ALCR_+ROIN$ OWI 2 ◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

117

Fuzzy DLs Basics

The semantics is an immediate consequence of applying mathematical fuzzy logic to the First-Order-Logic translation of DLs expressions

Interpretation:	$ \begin{array}{lll} \mathcal{I} & = & \Delta^{\mathcal{I}} \\ \mathcal{C}^{\mathcal{I}} & : & \Delta^{\mathcal{I}} \to [0, 1] \\ \mathcal{R}^{\mathcal{I}} & : & \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \end{array} $	$\begin{matrix} \otimes \\ \oplus \\ \ominus \\ \rightarrow \\ [0,1] \end{matrix} \qquad \begin{array}{c} \otimes \\ \oplus \\ \ominus \\ \Rightarrow \\ \end{array}$	= = =	t-norm s-norm negation implication
	Syntax	Semantics		
Concepts:	$\begin{array}{cccc} C,D & \longrightarrow & \top \mid & & \\ & & \bot \mid & & \\ & & C \sqcap D \mid & \\ & C \sqcup D \mid & \\ & & C \sqcup D \mid & \\ & \neg C \mid & \\ & \exists R.C \mid & \\ & \forall R.C & \end{array}$	$ \begin{array}{c} \top^{\mathcal{I}}(x) \\ \perp^{\mathcal{I}}(x) \\ A^{\mathcal{I}}(x) \\ (C_1 \sqcap C_2)^{\mathcal{I}}(x) \\ (C_1 \sqcup C_2)^{\mathcal{I}}(x) \\ (\neg C)^{\mathcal{I}}(x) \\ (\exists R.C)^{\mathcal{I}}(x) \\ (\forall R.C)^{\mathcal{I}}(u) \end{array} $	= E = = =	$ \begin{array}{l} 1 \\ 0 \\ [0,1] \\ C_1^{\ T}(x) \otimes C_2^{\ T}(x) \\ C_1^{\ T}(x) \oplus C_2^{\ T}(x) \\ \oplus C^{\ T}(x) \\ \sup_{y \in \Delta^{\mathcal{I}}} R^{\ T}(x,y) \otimes C^{\ T}(y) \\ \inf_{y \in \Delta^{\mathcal{I}}} R^{\ T}(x,y) \Rightarrow C^{\ T}(y) \} \end{array} $
Assertions: Inclusion axioms:	$\langle a:C, n \rangle, \mathcal{I} \models \langle a:C, n \rangle$ iff C individual <i>a</i> is instance	$\mathcal{L}^{\mathcal{I}}(a^{\mathcal{I}}) \ge n$ (similarless of concept <i>C</i> at lease of concept <i>C</i> at lease	y for r ast to	oles) degree <i>n</i> , $n \in [0, 1] \cap \mathbb{Q}$

117

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Fuzzy DL: Specific Constructs

- Concrete data types
 - e.g., Sedan \sqcap (\geqslant price 22.000)
- Fuzzy constraints
 - numerical features may be constrained by so-called fuzzy membership functions

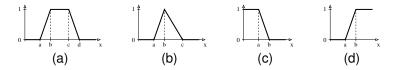


Figure: (a) Trapezoidal function trz(a, b, c, d), (b) triangular function tri(a, b, c), (c) left shoulder function ls(a, b), and (d) right shoulder function rs(a, b).

► For instance, *item*4's price is about 24000

item4: 3price.tri(22000, 24000, 26000)

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Definition (Specific Concept Expressions)

 $\begin{array}{lll} C & \rightarrow & \forall t.d \mid \exists t.d \ (\mathsf{fuzzy \ constraints}) \\ d & \rightarrow & \mathit{ls}(a,b) \mid \mathit{rs}(a,b) \mid \mathit{tri}(a,b,c) \mid \mathit{trz}(a,b,c,d) \end{array}$

e.g.

Car ⊓ ∃*price*. *tri*(22000, 24000, 26000)

$$\begin{array}{rcl} C & \to & DR & (datatype restriction) \\ DR & \to & (\geqslant t \ val) \ | \ (\leqslant t \ val) \ | \ (= t \ val) \\ val & \to & string \ | \ rational \ | \ FN \ | \ AE \\ FN & \to & rational \ | \ fuzzynumber \ | \ FN_1 \ \star \ FN_2 \ \ \star \in \{+, -, \cdot, \div\} \\ AE & \to & rational \ | \ t \ | \ n \cdot t \ | \ AE_1 + AE_2 \end{array}$$

e.g.

)

117

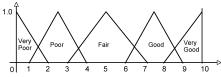
e.g.,

 $\textit{NiceHotel} \doteq 0.3 \cdot \textit{CheapHotel} + 0.7 \cdot \textit{ConfortableHotel}$

 $C \rightarrow mod(C)$ (modified concept)

where mod is a linear hedge. E.g.,

SportCar ⊑ Car ⊓ ∃hasSpeed.very(High)


Example

Assume that we have to chose among three offers for a GIS system that have been evaluated according to

Criteria: Cost, Delivery Time and Quality

Assume the decision matrix and the definition of the vague performance values are

	Offer	Cost 0.258	DeliveryTime 0.105	Quality 0.637		
Ì	a ₁	VeryPoor	Fair	Good		
	a ₂	Good	VeryGood	Poor		
	a ₃	Fair	Fair	Poor		

Fuzzy DL encoding:

 $VeryPoor \doteq Is(0, 2), Poor \doteq tri(1, 2.5, 4), Fair \doteq tri(3, 5, 7), Good \doteq tri(6, 7.5, 9), VeryGood \doteq rs(8, 10)$

a1 :Alternative □ ∃hasCost.VeryPoor □ ∃hasDeliveryTime.Fair □ ∃hasQuality.Good

a₂:Alternative □ ∃hasCost.Good □ ∃hasDeliveryTime.VeryGood □ ∃hasQuality.Poor

a₃:Alternative □ ∃hasCost.Fair □ ∃hasDeliveryTime.Fair □ ∃hasQuality.Poor

Alternative = (= hasRankValue 0.258 · hasCost + 0.105 · hasDeliveryTime + 0.637 · hasQuality)

Final Rank Value: rank(K, a_i) = mom(K, Alternative, a_i, hasRankValue)

$rank(\mathcal{K}, a_1)$	=	5.301
$rank(\mathcal{K}, a_2)$	=	4.577
$rank(\mathcal{K}, a_3)$	=	3.408

$$a^* = \arg \max_{a_i} \operatorname{rank}(\mathcal{K}, a_i) = a_1$$

- Encoding nicely extends if background knowledge is involved such as, *e.g.*,
 - Criteria taxonomy

Consistency

DataQualityElement

Properties of alternatives, *e.g.*,

a₁:Alternative ⊓ ∃hasSecurity.VeryPoor

Sequence of the sequence of th						88 (0	ι
Active Ontology Entitie	es Classes	Object Properties	Data Properties	Individuals	OWLViz D	L Query	SoftFacts Tab
Asserted class hierarchy Inferred class hierarchy				Class Annotation	s Class Usage]	
erted class hierarchy: QualityDimension @==®	Annota	tions: QualityDimens	ion				
🕞 - 🕱	Annotati	ons 🕜					
 Thing ⇒ ElowControlStructure ■ GeoprocessingOperation ⇒ GeoprocessingOperation 		nt uality is a Quantifiable urement."@en	aspect of quality. A [Dimension has a D	Oomain and ma	y have a D	Direction or Unit o
Direction							
Domain							
QualityAttribute QualityDimension							
 QoSDimension 							
Availability							
ConformanceToStandards							
Cost Performance							
Reliability							
Reputation							
Security	Descripti	on: QualityDimensio	n				
 VolumeOfData DataQualityElement 	Equivalent	classes 🙆					
Completeness		main some Domain	•				
Consistency		asDirection only Di					
PositionalAccuracy	and h	asDomain only Dor	nain				
Reputation	and h	asUnitOfMeasure o	nly UnitOfMeasur	ement			
TemporalAccuracy							

Conclusions & Outlook

- We have made a first attempt towards MCDM within fuzzy DLs, *i.e.*,
 - Towards a (fuzzy) knowledge-assisted approach to decision making
- FUZZYDL reasoner supports the encoding proposed here
- The MCDM literature (inclusive their fuzzy MCDM variants) is quite large
- It will be of interest to look at
 - how to integrate and support different MCDM methods
 - a methodology to smoothly integrate background knowledge into MCDM
 - whether (fuzzy) knowldege/ontology-based MCDM is an added-value in real-world applications

Fernando Bobillo, Miguel Delgado, and Juan Gómez-Romero.

Delorean: A reasoner for fuzzy OWL 1.1.

In Proceedings of the 4th International Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2008), volume 423. CEUR Workshop Proceedings, 10 2008.

Fernando Bobillo and Umberto Straccia. fuzzyDL: An expressive fuzzy description logic reasoner. In 2008 International Conference on Fuzzy Systems (FUZZ-08), pages 923–930. IEEE Computer Society, 2008.

Petr Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.

Ian Horrocks and Peter Patel-Schneider. Reducing OWL entailment to description logic satisfiability. *Journal of Web Semantics*, 2004.

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

Carsten Lutz and Maja Milicic.

A tableau algorithm for description logics with concrete domains and general tboxes.

J. Autom. Reasoning, 38(1-3):227–259, 2007.

Thomas Lukasiewicz and Umberto Straccia. Managing uncertainty and vagueness in description logics for the semantic web.

Journal of Web Semantics, 6:291–308, 2008.

Richard Onchaga, Ing Widya, Javier Morales, and J. M. Lambert.

An ontology framework for quality of geographical information services.

In *GIS '08: Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic information systems*, pages 1–4, New York, NY, USA, 2008. ACM.

 Giorgos Stoilos, Nikolaos Simou, Giorgos Stamou, and Stefanos Kollias.
 Uncertainty and the semantic web. *IEEE Intelligent Systems*, 21(5):84–87, 2006.

Umberto Straccia.

Description logics with fuzzy concrete domains.

In Fahiem Bachus and Tommi Jaakkola, editors, *21st Conference on Uncertainty in Artificial Intelligence (UAI-05)*, pages 559–567, Edinburgh, Scotland, 2005. AUAI Press.